30 results on '"Carleman estimate"'
Search Results
2. Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain
- Author
-
Mo Chen
- Subjects
inverse problem ,Korteweg-de Vries equation ,Carleman estimate ,Analysis ,QA299.6-433 - Abstract
Abstract In this paper, we address an inverse problem for the Korteweg-de Vries equation posed on a bounded domain with boundary conditions proposed by Colin and Ghidaglia. More precisely, we retrieve the principal coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability of this inverse problem relies on a Carleman estimate for the linearized Korteweg-de Vries equation and the Bukhgeı̌m-Klibanov method.
- Published
- 2017
- Full Text
- View/download PDF
3. Stabilization of the weakly coupled plate equations with a locally distributed damping
- Author
-
Xianzheng Zhu
- Subjects
0209 industrial biotechnology ,Algebra and Number Theory ,Partial differential equation ,Semigroup ,Applied Mathematics ,lcsh:Mathematics ,010102 general mathematics ,Mathematical analysis ,02 engineering and technology ,Carleman estimate ,lcsh:QA1-939 ,01 natural sciences ,Coupling (physics) ,020901 industrial engineering & automation ,Coupled plate equations ,Ordinary differential equation ,0101 mathematics ,Indirect damping ,Logarithmic decay ,Analysis ,Resolvent ,Mathematics - Abstract
In this paper, we study the indirect stabilization of a system of plate equations which are weakly coupled and locally damped. By virtue of the general results due to Burq in the study of asymptotic behavior of solutions, we prove that the semigroup associated to the system is logarithmically stable under some assumptions on the damping and the coupling terms. For this purpose, we adopt an approach based on the growth of the resolvent on the imaginary axis, which can be obtained by some Carleman estimates.
- Published
- 2020
- Full Text
- View/download PDF
4. Analysis of the heart-torso conductivity parameters recovery inverse problem in cardiac electrophysiology ECG modelling
- Author
-
Mourad Bellassoued, Nejib Zemzemi, Moncef Mahjoub, Abir Amri, Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM), Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), This work has been supported by EPICARD cooperative research program, funded by INRIA international laboratory LIRIMA. The LAMSIN researcher’s work is supported on a regular basis by the Tunisian Ministry ofHigher Education, Scientific Research and Technology. This work was also supported by the Agence Nationale de la Recherche (grant number IHU LIRYC ANR-10-IAHU-04)., Epicard, Lirima, SPICY, ANR-10-IAHU-0004,LIRYC,L'Institut de Rythmologie et modélisation Cardiaque(2010), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, and Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux]
- Subjects
Quantitative Biology::Tissues and Organs ,Physics::Medical Physics ,Conductivity parameters ,Cardiac electrophysiology ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Computer Science::Robotics ,2010 Mathematics Subject Classification.Primary 35Q92, Secondary: 35R30 ,medicine ,0101 mathematics ,Stability estimate ,Monodomain model ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Torso ,Lipschitz continuity ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010101 applied mathematics ,Parameter identification problem ,Elliptic curve ,medicine.anatomical_structure ,Analysis - Abstract
International audience; In this paper, we prove a stability estimate of the conductivity parameters identification problem in cardiac electrophysiology. The propagation of the electrical wave in the heart is described by the monodomain model coupled to an elliptic equation describing the diffusion of the electrical wave in the whole body. Our result concerns both heart and torso conductivity parameters. The main difficulty that we solve in this paper is related to the transmission conditions between the heart and the torso. We first, establish Carleman estimates for the coupled heart-torso system. Then, using these estimates and the Bukhgeim and Klibanov approach, we prove a Lipschitz stability estimate of cardiac and torso conductivity parameters.
- Published
- 2021
- Full Text
- View/download PDF
5. Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide
- Author
-
Diomba Sambou, Yavar Kian, Eric Soccorsi, CPT - E8 Dynamique quantique et analyse spectrale, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
- Subjects
Logarithm ,partial boundary data ,Boundary (topology) ,Carleman estimate ,01 natural sciences ,Mathematics - Analysis of PDEs ,35R30, 35K05 ,FOS: Mathematics ,Free boundary problem ,time-dependent source term ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Waveguide (acoustics) ,0101 mathematics ,Mathematics ,heat equation ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,Parabolic partial differential equation ,010101 applied mathematics ,Inverse scattering problem ,stability inequality ,Heat equation ,Analysis ,Analysis of PDEs (math.AP) - Abstract
International audience; We prove logarithmic stability in the parabolic inverse problem of determining the space-varying factor in the source, by a single partial boundary measurement of the solution to the heat equation in an infinite closed waveguide, with homogeneous initial and Dirichlet data.
- Published
- 2018
- Full Text
- View/download PDF
6. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system
- Author
-
Giuseppe Floridia, Hiroshi Takase, and Masahiro Yamamoto
- Subjects
Control and Optimization ,observability ,energy estimate ,Carleman estimate ,conditional stability ,symmetric hyperbolic system ,Mathematics::Optimization and Control ,Mathematics::Analysis of PDEs ,Mathematics - Analysis of PDEs ,Modeling and Simulation ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,Analysis ,Analysis of PDEs (math.AP) - Abstract
For a symmetric hyperbolic system of the first order, we prove a Carleman estimate under some positivity condition concerning the coefficient matrices. Next, applying the Carleman estimate, we prove an observability \begin{document}$ L^2 $\end{document}-estimate for initial values by boundary data.
- Published
- 2022
- Full Text
- View/download PDF
7. Carleman estimates for integro-differential parabolic equations with singular memory kernels
- Author
-
Daniela Sforza, Paola Loreti, and Masahiro Yamamoto
- Subjects
Numerical Analysis ,Weight function ,Partial differential equation ,Applied Mathematics ,parabolic equations ,integro-differential equations ,fading memory ,Carleman estimate ,010102 general mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Perturbation (astronomy) ,01 natural sciences ,Parabolic partial differential equation ,010101 applied mathematics ,Time factor ,0101 mathematics ,Crucial point ,Analysis ,Mathematics - Abstract
On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $$\partial _t-\triangle +\int _0^t K(x,t,r)\triangle \ dr$$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.
- Published
- 2017
- Full Text
- View/download PDF
8. Inverse Problems for Parabolic Equation with Discontinuous Coefficients
- Author
-
Varadharaj Dinakar, N. Barani Balan, and Krishnan Balachandran
- Subjects
Statistics and Probability ,Inverse problems ,0209 industrial biotechnology ,Numerical Analysis ,Reaction-Diffusion model ,Applied Mathematics ,lcsh:Mathematics ,Mathematical analysis ,02 engineering and technology ,Parabolic cylinder function ,Inverse problem ,Carleman estimate ,lcsh:QA1-939 ,01 natural sciences ,Stability (probability) ,Parabolic partial differential equation ,010101 applied mathematics ,020901 industrial engineering & automation ,Discontinuous Galerkin method ,Parabolic cylindrical coordinates ,Reaction–diffusion system ,0101 mathematics ,Stability ,Analysis ,Mathematics - Abstract
We consider the reaction-diffusion equation with discontinuities in the diffusion coefficient and the potential term. We start by deriving the Carleman estimate for the discontinuous reaction-diffusion operator which is deployed in the inverse problems of finding the stability result of the two discontinuous coefficients from the internal observations of the given parabolic equation.
- Published
- 2017
9. An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation
- Author
-
Mourad Bellassoued, Yavar Kian, Eric Soccorsi, Fédération de recherche Denis Poisson (FDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Carthage - University of Carthage, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E8 Dynamique quantique et analyse spectrale, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), and Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Infinite cylindrical waveguide ,Logarithm ,Inverse Problems ,Boundary (topology) ,Inverse ,Schrödinger equation ,Scalar potential ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,35R30, 35Q41 ,symbols.namesake ,Stability estimate ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Waveguide (acoustics) ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,16. Peace & justice ,010101 applied mathematics ,symbols ,Analysis - Abstract
International audience; In this paper we investigate the inverse problem of determining the time independent scalar potential of the dynamic Schrödinger equation in an infinite cylindrical domain, from partial measurement of the solution on the boundary. Namely, if the potential is known in a neighborhood of the boundary of the spatial domain, we prove that it can be logarithmic stably determined in the whole waveguide from a single observation of the solution on any arbitrary strip-shaped subset of the boundary.
- Published
- 2016
- Full Text
- View/download PDF
10. A Hölder stability estimate for inverse problems for the ultrahyperbolic Schrödinger equation
- Author
-
Fikret Gölgeleyen, Özlem Kaytmaz, and Zonguldak Bülent Ecevit Üniversitesi
- Subjects
Algebra and Number Theory ,Ultrahyperbolic Schrödinger equation ,010102 general mathematics ,Inverse problem ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Schrödinger equation ,Term (time) ,symbols.namesake ,0103 physical sciences ,Boundary data ,symbols ,Applied mathematics ,010307 mathematical physics ,0101 mathematics ,Stability ,Mathematical Physics ,Analysis ,Mathematics - Abstract
In this article, we first establish a global Carleman estimate for an ultrahyperbolic Schrödinger equation. Next, we prove Hölder stability for the inverse problem of determining a coefficient or a source term in the equation by some lateral boundary data. © 2019, Springer Nature Switzerland AG.
- Published
- 2019
11. Determination of singular time-dependent coefficients for wave equations from full and partial data
- Author
-
Yavar Kian, Guanghui Hu, Beijing Computational Science Research Center [Beijing] (CSRC), CPT - E8 Dynamique quantique et analyse spectrale, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Inverse problems ,Pure mathematics ,Control and Optimization ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,Set (abstract data type) ,Mathematics - Analysis of PDEs ,35R30, 35L05 ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Pharmacology (medical) ,0101 mathematics ,singular coefficients ,Physics ,time dependent coefficient ,010102 general mathematics ,Inverse problem ,Wave equation ,010101 applied mathematics ,Nonlinear system ,Nonlinear wave equation ,Modeling and Simulation ,Bounded function ,Gravitational singularity ,wave equation ,Analysis ,Analysis of PDEs (math.AP) - Abstract
We study the problem of determining uniquely a time-dependent singular potential \begin{document}$q$\end{document} , appearing in the wave equation \begin{document}$\partial_t^2u-Δ_x u+q(t,x)u = 0$\end{document} in \begin{document}$Q = (0,T)×Ω$\end{document} with \begin{document}$T>0$\end{document} and \begin{document}$Ω$\end{document} a \begin{document}$ \mathcal C^2$\end{document} bounded domain of \begin{document}$\mathbb{R}^n$\end{document} , \begin{document}$n≥2$\end{document} . We start by considering the unique determination of some general singular time-dependent coefficients. Then, by weakening the singularities of the set of admissible coefficients, we manage to reduce the set of data that still guaranties unique recovery of such a coefficient. To our best knowledge, this paper is the first claiming unique determination of unbounded time-dependent coefficients, which is motivated by the problem of determining general nonlinear terms appearing in nonlinear wave equations.
- Published
- 2018
- Full Text
- View/download PDF
12. Controllability of a 4 × 4 quadratic reaction-diffusion system
- Author
-
Kévin Le Balc'h, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), École normale supérieure - Rennes ( ENS Rennes ), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), École normale supérieure - Rennes (ENS Rennes), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Change of variables ,Controllability to stationary states ,Controllability Gramian ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Carleman estimate ,01 natural sciences ,Domain (mathematical analysis) ,Carleman esti- mate ,return method ,010101 applied mathematics ,Controllability ,Nonlinear system ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Linearization ,nonlinear coupling ,Reaction–diffusion system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Invariant (mathematics) ,parabolic system ,Analysis ,Mathematics - Abstract
International audience; We consider a 4 × 4 nonlinear reaction-diffusion system posed on a smooth domain Ω of R N (N ≥ 1) with controls localized in some arbitrary nonempty open subset ω of the domain Ω. This system is a model for the evolution of concentrations in reversible chemical reactions. We prove the local exact controllability to stationary constant solutions of the underlying reaction-diffusion system for every N ≥ 1 in any time T > 0. A specificity of this control system is the existence of some invariant quantities in the nonlinear dynamics. The proof is based on a linearization which uses return method and an adequate change of variables that creates crossed diffusion which will be used as coupling terms of second order. The controllability properties of the linearized system are deduced from Carleman estimates. A Kakutani's fixed-point argument enables to go back to the nonlinear parabolic system. Then, we prove a global controllability result in large time for 1 ≤ N ≤ 2 thanks to our local controllabillity result together with a known theorem on the asymptotics of the free nonlinear reaction diffusion system.
- Published
- 2017
- Full Text
- View/download PDF
13. Carleman estimates for stratified media
- Author
-
Jérôme Le Rousseau, Yves Dermenjian, Assia Benabdallah, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche Denis Poisson (FDP), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), ANR-07-JCJC-0139,CoNuM,Control and Numerical Methods. Applications to biology.(2007), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Non-smooth coefficients ,Elliptic operators ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,Parabolic operators ,Carleman estimate ,Classification of discontinuities ,01 natural sciences ,Domain (mathematical analysis) ,010101 applied mathematics ,Elliptic operator ,AMS 2010 subject classification: 35J15, 35K10 ,Stratified media ,Observation location ,Bounded function ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Anisotropy ,Analysis ,Mathematics - Abstract
International audience; We consider anisotropic elliptic and parabolic operators in a bounded stratified media in $\R^n$ characterized by discontinuties of the coefficients in one direction. The surfaces of discontinuities cross the boundary of the domain. We prove Carleman estimates for these operators with an arbitrary observation region.
- Published
- 2011
- Full Text
- View/download PDF
14. Inverse viscosity problem for the Navier–Stokes equation
- Author
-
Gen Nakamura, Yu Jiang, Jishan Fan, and Michele Di Cristo
- Subjects
Applied Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Navier–Stokes existence and smoothness ,Carleman estimate ,Inverse problem ,Non-dimensionalization and scaling of the Navier–Stokes equations ,Lipschitz continuity ,Physics::Fluid Dynamics ,Sobolev space ,Navier–Stokes equations ,Viscosity ,Inverse coefficient problem ,Hagen–Poiseuille flow from the Navier–Stokes equations ,Analysis ,Mathematics - Abstract
We consider an inverse problem of determining a viscosity coefficient in the Navier–Stokes equation by observation data in a neighborhood of the boundary. We prove the Lipschitz stability by the Carleman estimates in Sobolev spaces of negative order.
- Published
- 2010
- Full Text
- View/download PDF
15. Exponential stability of the plate equations with potential of second order and indefinite damping
- Author
-
Jing Li and Yingtao Wu
- Subjects
Observability inequality ,Damping ratio ,Exponential decay rate ,Applied Mathematics ,Mathematical analysis ,Perturbation (astronomy) ,Carleman estimate ,Upper and lower bounds ,Indefinite damping ,Exponential stability ,Exponential growth ,Plate equation ,Observability ,Exponential decay ,Analysis ,Mathematics ,Numerical stability - Abstract
We study the exponential stability of the plate equations with potential of second order and indefinite sign damping term. By means of a global Carleman-type estimate and the usual perturbation method, we show that the energy of the system decays exponentially provided that the negative damping is sufficiently small. Both the energy decay rate and the upper bound estimate on the negative damping are given explicitly.
- Published
- 2009
- Full Text
- View/download PDF
16. Controllability and observability of a heat equation with hyperbolic memory kernel
- Author
-
Xiaoyu Fu, Jiongmin Yong, and Xu Zhang
- Subjects
Controllability ,FTCS scheme ,Applied Mathematics ,Mathematical analysis ,Heat equation with memory ,Carleman estimate ,Parabolic partial differential equation ,Highly concentrated approximate solution ,Kernel (image processing) ,Heat equation ,Observability ,Observability estimate ,Anisotropy ,Hyperbolic partial differential equation ,Analysis ,Mathematics - Abstract
The exact controllability and observability for a heat equation with hyperbolic memory kernel in anisotropic and nonhomogeneous media are considered. Due to the appearance of such a kind of memory, the speed of propagation for solutions to the heat equation is finite and the corresponding controllability property has a certain nature similar to hyperbolic equations, and is significantly different from that of the usual parabolic equations. By means of Carleman estimate, we establish a positive controllability and observability result under some geometric condition. On the other hand, by a careful construction of highly concentrated approximate solutions to hyperbolic equations with memory, we present a negative controllability and observability result when the geometric condition is not satisfied.
- Published
- 2009
- Full Text
- View/download PDF
17. Carleman Estimate for Elliptic Operators with Coefficients with Jumps at an Interface in Arbitrary Dimension and Application to the Null Controllability of Linear Parabolic Equations
- Author
-
Luc Robbiano, Jérôme Le Rousseau, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), The first author was partially supported by l'Agence Nationale de la Recherche under grant ANR-07-JCJC-0139-01, and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics::Analysis of PDEs ,Microlocal analysis ,Carleman estimate ,01 natural sciences ,symbols.namesake ,Mathematics (miscellaneous) ,AMS 2000 subject classification: 35J15 ,35S15 ,35K05 ,93B05 ,93B07 ,Control ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Nabla symbol ,Boundary value problem ,0101 mathematics ,Mathematics ,Parabolic equation ,Dirichlet problem ,Transmission problem ,Mechanical Engineering ,Calderón projectors ,010102 general mathematics ,Mathematical analysis ,Elliptic equation ,Non-smooth coefficent ,Parabolic partial differential equation ,010101 applied mathematics ,Elliptic curve ,Elliptic operator ,Dirichlet boundary condition ,symbols ,Analysis - Abstract
In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, $${A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}$$ , where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S. We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderon projector technique. Following the method of Lebeau and Robbiano (Comm Partial Differ Equ 20:335–356, 1995) we then prove the null controllability for the linear parabolic initial problem with Dirichlet boundary conditions associated with the operator $${{\partial_t - \nabla_x \cdot (c(x) \nabla_x)}}$$ .
- Published
- 2009
- Full Text
- View/download PDF
18. Single logarithmic conditional stability in determining unknown boundaries
- Author
-
Johannes Elschner, Guanghui Hu, and Masahiro Yamamoto
- Subjects
Logarithm ,Conditional stability ,inverse problems ,Applied Mathematics ,010102 general mathematics ,elliptic equations ,Cauchy distribution ,Carleman estimate ,74B05 ,01 natural sciences ,010101 applied mathematics ,35R30 ,Inverse scattering problem ,78A46 ,Applied mathematics ,stability estimate ,0101 mathematics ,Analysis ,Mathematics - Abstract
We prove a conditional stability estimate of log-type for determining unknown boundaries from a single Cauchy data taken on an accessible subboundary. Our approach relies on new interior and boundary estimates derived from the Carleman estimate for elliptic equations. A local stability result for target identification of an acoustic sound-soft scatterer from a single far-field pattern is also obtained.
- Published
- 2016
- Full Text
- View/download PDF
19. Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem
- Author
-
Jérôme Le Rousseau, Yves Dermenjian, Assia Benabdallah, Laboratoire d'Analyse, Topologie, Probabilités (LATP), and Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- Subjects
observability ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,parabolic equations ,AMS 2000 subject classification: 93B05, 93B07, 35K05, 35K55, 35R30 ,Inverse problem ,Carleman estimate ,01 natural sciences ,Parabolic partial differential equation ,010101 applied mathematics ,Controllability ,Piecewise ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Heat equation ,Observability ,0101 mathematics ,control ,Linear equation ,non-smooth coefficients ,Analysis ,Numerical stability ,Mathematics - Abstract
International audience; We study the observability and some of its consequences (controllability, identification of diffusion coefficients) for one-dimensional heat equations with discontinuous coefficients (piecewise $\Con^1$). The observability, for a linear equation, is obtained by a Carleman-type estimate. This kind of observability inequality yields controllability results for a semi-linear equation as well as a stability result for the identification of the diffusion coefficient.
- Published
- 2007
- Full Text
- View/download PDF
20. Estimates of initial conditions of parabolic equations and inequalities in infinite domains via lateral Cauchy data
- Author
-
Alexander V. Tikhonravov and Michael V. Klibanov
- Subjects
Cauchy problem ,Cauchy's convergence test ,Applied Mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Cauchy distribution ,Parabolic cylinder function ,Carleman estimate ,Parabolic operator ,Elliptic partial differential equation ,Parabolic cylindrical coordinates ,Inverse problem ,Initial value problem ,Cauchy boundary condition ,Initial condition ,Analysis ,Mathematics - Abstract
A parabolic equation/inequality in an infinite domain is considered. The lateral Cauchy data are given at an arbitrary C 2 -smooth lateral surface. The inverse problem of the interest of this paper consists in an estimate of the unknown initial condition via these Cauchy data.
- Published
- 2007
- Full Text
- View/download PDF
21. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients
- Author
-
Jérôme Le Rousseau, Laboratoire d'Analyse, Topologie, Probabilités (LATP), and Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Constant coefficients ,0209 industrial biotechnology ,observability ,Mathematics::Analysis of PDEs ,AMS 2000: 93B05 ,93B07 ,35K05 ,35K55 ,02 engineering and technology ,Computer Science::Computational Geometry ,Carleman estimate ,01 natural sciences ,020901 industrial engineering & automation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,Observability ,0101 mathematics ,non-smooth coefficients ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,parabolic equations ,General Medicine ,Parabolic partial differential equation ,Linear map ,Controllability ,Bounded function ,Piecewise ,Heat equation ,AMS 2000 subject classification: 93B05, 93B07, 35K05, 35K55 ,control ,Analysis - Abstract
We derive global Carleman estimates for one-dimensional linear parabolic operators ∂ t ± ∂ x ( c ∂ x ) with a coefficient c with bounded variations. These estimates are obtained by approximating c by piecewise regular coefficients, c e , and passing to the limit in the Carleman estimates associated to the operators defined with c e . Such estimates yield results of controllability to the trajectories for a class of semilinear parabolic equations. To cite this article: J. Le Rousseau, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
- Published
- 2007
- Full Text
- View/download PDF
22. Inverse problem on a tree-shaped network: Unified approach for uniqueness
- Author
-
Lucie Baudouin, Masahiro Yamamoto, Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Graduate School of Mathematical Sciences, The University of Tokyo (UTokyo), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Applied Mathematics ,Mathematical analysis ,Stability (learning theory) ,Inverse problem ,Carleman estimate ,Wave equation ,AMS subject classifications: 35R30, 93C20, 34B45 ,Schrödinger equation ,symbols.namesake ,networks ,Inverse scattering problem ,symbols ,inverse problem ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,Enhanced Data Rates for GSM Evolution ,Observability ,Analysis ,Mathematics - Abstract
International audience; In this article, we prove uniqueness results for coefficient inverse problems regarding wave, heat or Schr\"odinger equation on a tree-shaped network, as well as the corresponding stability result of the inverse problem for the wave equation. The objective is the determination of the potential on each edge of the network from the additional measurement of the solution at all but one external end points. Several results have already been obtained in this precise setting or in similar cases, and our main goal is to propose a unified and simpler method of proof of some of these results. The idea which we will develop for proving the uniqueness is to use a more traditional approach in coefficient inverse problems by Carleman estimates. Afterwards, using an observability estimate on the whole network, we apply a compactness-uniqueness argument and prove the stability for the wave inverse problem.
- Published
- 2015
23. H\'older stable determination of a quantum scalar potential in unbounded cylindrical domains
- Author
-
Yavar Kian, Quang Sang Phan, Eric Soccorsi, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics [Krakow], and Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ)
- Subjects
Mathematics::Analysis of PDEs ,Boundary (topology) ,Scalar potential ,Schrödinger equation ,Carleman estimate ,01 natural sciences ,Stability (probability) ,Domain (mathematical analysis) ,symbols.namesake ,Mathematics - Analysis of PDEs ,scalar potential ,Neumann boundary condition ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse problem ,infinite cylindrical domain ,Mathematics::Spectral Theory ,010101 applied mathematics ,35R30 ,Dirichlet boundary condition ,symbols ,Analysis - Abstract
We consider the inverse problem of determining the time independent scalar potential of the dynamic Schr\"odinger equation in an infinite cylindrical domain from one boundary Neumann observation of the solution. We prove H\"older stability by choosing the Dirichlet boundary condition suitably.
- Published
- 2013
- Full Text
- View/download PDF
24. Carleman estimates for anisotropic elliptic operators with jumps at an interface
- Author
-
Nicolas Lerner, Jérôme Le Rousseau, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche Denis Poisson (FDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-07-JCJC-0139,CoNuM,Control and Numerical Methods. Applications to biology.(2007), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), and Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
Weight function ,Anisotropic diffusion ,Interface (Java) ,quasimode ,35J75 ,Carleman estimate ,01 natural sciences ,Matrix (mathematics) ,Quasi-mode ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,nonsmooth coefficient ,0101 mathematics ,Anisotropy ,Mathematics ,Numerical Analysis ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Mathematics::Spectral Theory ,010101 applied mathematics ,Elliptic operator ,Hypersurface ,Non-smooth coefficient ,35J15 ,35J57 ,Jump ,Analysis - Abstract
We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are necessary.
- Published
- 2013
- Full Text
- View/download PDF
25. Carleman estimates for some non smooth anisotropic media
- Author
-
Yves Dermenjian, Laetitia Thevenet, Assia Benabdallah, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Benabdallah, Assia, Institut de Mathématiques de Marseille (I2M), and Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
- Subjects
Block (permutation group theory) ,Carleman estimate ,Non smooth ,01 natural sciences ,Car-leman estimate ,AMS 2010 subject classification: 35B37, 35J15, 35J60 ,stratified media ,Order (group theory) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,Anisotropy ,approximation ,non-smooth coefficients ,Mathematics ,observation location ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Block matrix ,Hermitian matrix ,010101 applied mathematics ,anisotropic elliptic operators ,Bounded function ,Piecewise ,Analysis - Abstract
International audience; Let B be a n × n block diagonal matrix in which the first block C τ is an hermitian matrix of order (n − 1) and the second block c is a positive function. Both are piecewise smooth in Ω, a bounded domain of R n. If S denotes the set where discontinuities of C τ and c can occur, we suppose that Ω is stratified in a neighborhood of S in the sense that locally it takes the form Ω × (−δ, δ) with Ω ⊂ R n−1 , δ > 0 and S = Ω × {0}. We prove a Carleman estimate for the elliptic operator A = −∇ · (B∇) with an arbitrary observation region. This Carleman estimate is obtained through the introduction of a suitable mesh of the neighborhood of S and an associated approximation of c involving the Carleman large parameters.
- Published
- 2012
- Full Text
- View/download PDF
26. A Partial Data Result for the Magnetic Schrodinger Inverse Problem
- Author
-
Francis J. Chung
- Subjects
Mathematics::Analysis of PDEs ,Boundary (topology) ,Carleman estimate ,partial data ,Domain (mathematical analysis) ,symbols.namesake ,Operator (computer programming) ,Mathematics - Analysis of PDEs ,Dirichlet–Neumann map ,FOS: Mathematics ,pseudodifferential operators ,Mathematics ,Rest (physics) ,Numerical Analysis ,Pseudodifferential operators ,inverse problems ,Applied Mathematics ,Mathematical analysis ,magnetic Schrödinger operator ,Inverse problem ,Mathematics::Spectral Theory ,35R30 ,symbols ,Analysis ,Schrödinger's cat ,35S99 ,semiclassical analysis ,Analysis of PDEs (math.AP) - Abstract
This article shows that knowledge of the Dirichlet-Neumann map on certain subsets of the boundary for input functions supported roughly on the rest of the boundary can be used to determine a magnetic Schr\"{o}dinger operator. With some geometric conditions on the domain, either the subset on which the DN map is measured or the subset on which the input functions have support may be made arbitrarily small. This is an improvement on the partial data result in a paper by Dos Santos Ferreira, Kenig, Sj\"{o}strand, and Uhlmann. The method involves modifying the Carleman estimate in that paper by conjugation with operators built from pseudodifferential pieces., Comment: 47 pages, 2 figures
- Published
- 2011
- Full Text
- View/download PDF
27. About stability and regularization of ill-posed elliptic Cauchy problems: The case of C1,1 domains
- Author
-
Laurent Bourgeois, Propagation des Ondes : Étude Mathématique et Simulation (POEMS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Well-posed problem ,Weight function ,Mathematics Subject Classification: 35A15 ,35N25 ,35R25 ,35R30 ,010103 numerical & computational mathematics ,distance function ,Carleman estimate ,01 natural sciences ,0101 mathematics ,Mathematics ,Laplace's equation ,Numerical Analysis ,Laplace transform ,Applied Mathematics ,Mathematical analysis ,Cauchy distribution ,010101 applied mathematics ,conditional stability ,Computational Mathematics ,Rate of convergence ,Modeling and Simulation ,Cauchy boundary condition ,quasi-reversibility ,Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Numerical stability ,elliptic Cauchy problems - Abstract
International audience; This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with C 1,1 boundary. It is an extension of an earlier result of [Phung, ESAIM: COCV 9 (2003) 621-635] for domains of class C∞. Our estimate is established by using a Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces a nearly optimal convergence rate for the method of quasi-reversibility introduced in [Lattès and Lions, Dunod (1967)] to solve the ill-posed Cauchy problems. © EDP Sciences, SMAI, 2010.
- Published
- 2010
- Full Text
- View/download PDF
28. Null controllability of the complex Ginzburg-Landau equation
- Author
-
Lionel Rosier, Bing-Yu Zhang, Institut Élie Cartan de Nancy (IECN), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Mathematical Sciences [Cincinnati], University of Cincinnati (UC), CORIDA, and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,Null controllability ,Controllability Gramian ,Ginzburg-Landau equation ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Null (mathematics) ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Ginzburg landau equation ,Boundary (topology) ,02 engineering and technology ,Mathematics::Spectral Theory ,Carleman estimate ,01 natural sciences ,Controllability ,020901 industrial engineering & automation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,93B05 ,35Q55 ,47N70 ,93C20 ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,Mathematical Physics ,Analysis ,Mathematics - Abstract
International audience; The paper investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg-Landau equation. Zero-controllability results are derived from a new Carleman estimate and an analysis based upon the theory of sectorial operators.
- Published
- 2009
- Full Text
- View/download PDF
29. Null controllability for the parabolic equation with a complex principal part
- Author
-
Xiaoyu Fu
- Subjects
Null controllability ,Observability ,Mathematical analysis ,Null (mathematics) ,Mathematics::Analysis of PDEs ,Parabolic cylinder function ,Carleman estimate ,Mathematics::Spectral Theory ,Parabolic equation with a complex principal part ,Parabolic partial differential equation ,Controllability ,Elliptic partial differential equation ,Optimization and Control (math.OC) ,FOS: Mathematics ,Principal part ,Partial derivative ,Universal approach ,Mathematics - Optimization and Control ,Analysis ,Mathematics - Abstract
The paper is devoted to a study of the null controllability for the semilinear parabolic equation with a complex principal part. For this purpose, we establish a key weighted identity for partial differential operators ( α + i β ) ∂ t + ∑ j , k = 1 n ∂ k ( a j k ∂ j ) (with real functions α and β), by which we develop a universal approach, based on global Carleman estimate, to deduce not only the desired explicit observability estimate for the linearized complex Ginzburg–Landau equation, but also all the known controllability/observability results for the parabolic, hyperbolic, Schrodinger and plate equations that are derived via Carleman estimates.
- Published
- 2008
30. Stabilization of the Wave Equations with Potential and Indefinite Damping
- Author
-
Xu Zhang, Kangsheng Liu, Bopeng Rao, Institut de Recherche Mathématique Avancée (IRMA), and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Partial differential equation ,93D15, 35B35,93B07 ,Applied Mathematics ,Mathematical analysis ,"Stabilization ,Dissipation ,Carleman estimate ,Wave equation ,Upper and lower bounds ,Stabilization ,indefinite damping ,Exponential growth ,wave equation ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,energy decay rate ,Hyperbolic partial differential equation ,Energy (signal processing) ,Analysis ,observability inequality ,Carleman estimate." ,Mathematics - Abstract
By means of global Carleman-type estimate, we study the stabilization problem of the wave equations with potential and indefinite damping. The energy decay rate of the system is given explicitly. Also, we obtain an upper bound estimate on the negative damping to guarantee the energy of the system decays exponentially.
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.