1. Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover
- Author
-
Victor Apestigue, Alejandro Gonzalo, Juan Jiménez, Justin Boland, Mark Lemmon, Jose de Mingo, Elisa García-Menendez, Joaquín Rivas, Joaquín Azcue, Laurent Bastide, Nuria Andrés-Santiuste, Javier Martínez-Oter, Miguel González-Guerrero, Alberto Martin-Ortega, Daniel Toledo, Francisco Alvarez-Rios, Felipe Serrano, Boris Martín-Vodopivec, Javier Manzano, Raquel López Heredero, Isaías Carrasco, Sergio Aparicio, Ángel Carretero, Daniel MacDonald, Lori Moore, María Alcacera, Jose Fernández-Viguri, Israel Martín, Margarita Yela, Maite Álvarez, Paula Manzano, Jose Martín, Juan del Hoyo, Manuel Reina, Roser Urqui, Jose Rodriguez-Manfredi, Manuel de la Torre Juárez, Christina Hernandez, Elizabeth Cordoba, Robin Leiter, Art Thompson, Soren Madsen, Michael Smith, Daniel Viúdez-Moreiras, Alfonso Saiz-Lopez, Agustín Sánchez-Lavega, Laura Gomez-Martín, Germán Martínez, Francisco Gómez-Elvira, Ignacio Arruego, Agencia Estatal de Investigación (España), Comunidad de Madrid, Instituto Nacional de Técnica Aeroespacial (INTA), Gobierno Vasco, Ministerio de Economía y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and National Aeronautics and Space Administration (NASA)
- Subjects
Extraterrestrial Environment ,Atmosphere ,Mars 2020 ,MEDA ,Mars ,Dust ,Biochemistry ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,RDS ,instrumentation ,atmosphere ,dust ,clouds ,ozone ,Ozone ,Clouds ,Electrical and Electronic Engineering ,Instrumentation - Abstract
32 pags., 26 figs., 3 tabs. -- This article belongs to the Section Remote Sensors, The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features., This work has been funded with the help of the Spanish National Research, Development and Innovation Program, through the grants RTI2018-099825-B-C31, ESP2016-80320-C2-1-R and ESP2014-54256-C4-3-R. DT acknowledges the financial support from the Comunidad de Madrid for an “Atracción de Talento Investigador” grant (2018-T2/TIC10500). ASL is supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1366-19. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development program within the Space Technology Mission Directorate, and from the Human Exploration and Operations Directorate.
- Published
- 2022