1. A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning
- Author
-
Kaori Tabata, Mana Hashimoto, Haruka Takahashi, Ziyi Wang, Noriyuki Nagaoka, Toru Hara, and Hiroshi Kamioka
- Subjects
Machine Learning ,Mice ,Imaging, Three-Dimensional ,Endocrinology ,Endocrinology, Diabetes and Metabolism ,Animals ,Orthopedics and Sports Medicine ,Femur ,General Medicine ,Osteocytes ,Semantics - Abstract
Osteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images. We applied machine learning for the automatic semantic segmentation of osteocyte processes and canalicular wall and performed a morphometric analysis using three-dimensionally reconstructed images.Six-week-old-mice femur were used. Osteocyte processes and canaliculi were observed at a resolution of 2 nm/voxel in a 4 × 4 μm region with 2000 serial-section SEM images. Machine learning was used for automatic semantic segmentation of the osteocyte processes and canaliculi from serial-section SEM images. The results of semantic segmentation were evaluated using the dice similarity coefficient (DSC). The segmented data were reconstructed to create three-dimensional images and a morphological analysis was performed.The DSC was 83%. Using the segmented data, a three-dimensional image of approximately 3.5 μm in length was reconstructed. The morphometric analysis revealed that the median osteocyte process diameter was 73.8 ± 18.0 nm, and the median pericellular fluid space around the osteocyte process was 40.0 ± 17.5 nm.We used machine learning for the semantic segmentation of osteocyte processes and canalicular wall for the first time, and performed a morphological analysis using three-dimensionally reconstructed images.
- Published
- 2022