1. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.
- Author
-
Borhani Dizaji N, Basseri HR, Naddaf SR, and Heidari M
- Subjects
- Animals, Anopheles metabolism, Biological Assay methods, Calreticulin metabolism, Cloning, Molecular, Gene Transfer Techniques, Insect Vectors, Mice, Oocysts metabolism, Organisms, Genetically Modified, Plasmodium berghei metabolism, Recombinant Proteins metabolism, Sf9 Cells, Spodoptera, Anopheles genetics, Calreticulin genetics, Intestinal Mucosa metabolism, Plasmodium berghei genetics, Recombinant Proteins genetics
- Abstract
Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF