1. Highly adsorptive removal of ciprofloxacin and E. coli inactivation using amino acid tryptophan modified nano-gibbsite.
- Author
-
Pham TD, Nguyen PT, Phan TMN, Dinh TD, Tran TMH, Nguyen MK, Hoang TH, and Srivastav AL
- Subjects
- Adsorption, Water Pollutants, Chemical chemistry, Nanoparticles chemistry, Hydrogen-Ion Concentration, Water Purification methods, Escherichia coli drug effects, Ciprofloxacin chemistry, Tryptophan chemistry, Anti-Bacterial Agents chemistry
- Abstract
Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements. The selected parameters for Tryp adsorption on nano-gibbsite to form biomaterial, Tryp/gibbsite were pH 11, gibbsite dosage 20 mg/mL and 1400 mg/L Tryp. The optimum conditions for CFX removal using Tryp/gibbsite were adsorption time 60 min, pH 5, and 20 mg/mL Tryp/gibbsite dosage. The CFX removal significantly raised from 63 to 90% when using Tryp/gibbsite. The Freundlich and pseudo-second-order models achieved the best fits for CFX adsorption isotherm and kinetic on Tryp/gibbsite, respectively. The amount of CFX increased with increasing ionic strength, suggesting that both electrostatic and non-electrostatic interactions were important. After four reused time, CFX removal was greater than 66%, demonstrating that Tryp/gibbsite is reusable with high performance in removing CFX. The application in bacterial activity in term of E. coli reached greater than 98% that was the best material for bacteria inactivation. The present study reveals that Tryp/gibbsite is an excellent bio-material for removing CFX and E. coli., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF