1. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase.
- Author
-
Parker WB, King SA, Allan PW, Bennett LL Jr, Secrist JA 3rd, Montgomery JA, Gilbert KS, Waud WR, Wells AH, Gillespie GY, and Sorscher EJ
- Subjects
- Animals, Antimetabolites, Antineoplastic toxicity, Escherichia coli enzymology, Escherichia coli genetics, Genetic Vectors genetics, Humans, Mice, Mice, Nude, Neoplasm Transplantation, Purine Nucleosides therapeutic use, Purine Nucleosides toxicity, Purine-Nucleoside Phosphorylase genetics, Retroviridae genetics, Vidarabine Phosphate analogs & derivatives, Vidarabine Phosphate therapeutic use, Vidarabine Phosphate toxicity, Antimetabolites, Antineoplastic therapeutic use, Genetic Therapy methods, Glioma drug therapy, Prodrugs pharmacology, Purine-Nucleoside Phosphorylase physiology
- Abstract
We have developed a new strategy for the gene therapy of cancer based on the activation of purine nucleoside analogs by transduced E. coli purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1). The approach is designed to generate antimetabolites intracellularly that would be too toxic for systemic administration. To determine whether this strategy could be used to kill tumor cells without host toxicity, nude mice bearing human malignant D54MG glioma tumors expressing E. coli PNP (D54-PNP) were treated with either 6-methylpurine-2'-deoxyriboside (MeP-dR) or arabinofuranosyl-2-fluoroadenine monophosphate (F-araAMP, fludarabine, a precursor of F-araA). Both prodrugs exhibited significant antitumor activity against established D54-PNP tumors at doses that produced no discernible systemic toxicity. Significantly, MeP-dR was curative against this slow growing solid tumor after only 3 doses. The antitumor effects showed a dose dependence on both the amount of prodrug given and the level of E. coli PNP expression within tumor xenografts. These results indicated that a strategy using E. coli PNP to create highly toxic, membrane permeant compounds that kill both replicating and nonreplicating cells is feasible in vivo, further supporting development of this cancer gene therapy approach.
- Published
- 1997
- Full Text
- View/download PDF