1. Inactivation of Mst/Nrf2/Keap1 signaling flexibly mitigates MAPK/NQO-HO1 activation in the reproductive axis of experimental fluorosis.
- Author
-
Ommati MM, Sabouri S, Sun Z, Zamiri MJ, Retana-Marquez S, Nategh Ahmadi H, Zuo Q, Eftekhari A, Juárez-Rojas L, Asefi Y, Lei L, Cui SG, Jadidi MH, Wang HW, and Heidari R
- Subjects
- Male, Mice, Animals, Kelch-Like ECH-Associated Protein 1 metabolism, Signal Transduction, Oxidative Stress, Sodium Fluoride toxicity, Apoptosis, Antioxidants metabolism, NF-E2-Related Factor 2 metabolism
- Abstract
Fluoride induced reprotoxicity through oxidative stress-mediated reproductive cell death. Hence, the current study evaluated the importance of the MST/Nrf2/MAPK/NQO-HO1 signaling pathway in fluorosis-induced reproductive toxicity. For this purpose, the reproductive toxicity of sodium fluoride (NaF) at physiological, biochemical, and intracellular levels was evaluated. In-vivo, NaF at 100 mg/L instigated physiological dysfunction, morphological, stereological, and structural injuries in the gut-gonadal axis of fluorosis mice through weakening the antioxidant signaling, Nrf2/HO-1/NQO1signaling pathway, causing the gut-gonadal barrier disintegrated via oxidative stress-induced inflammation, mitochondrial damage, apoptosis, and autophagy. Similar trends were also observed in-vitro in the isolated Leydig cells (LCs) challenging with 20 mg/L NaF. Henceforth, activating the cellular antioxidant signaling pathway, Nrf2/HO-1/NQO1, inactivating autophagy and apoptosis, or attenuating lipopolysaccharide (LPS) can be the theoretical basis and valuable therapeutic targets for coping with NaF-induced reproductive toxicity., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF