1. Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin.
- Author
-
Vanderlinden E, Vanstreels E, Boons E, ter Veer W, Huckriede A, Daelemans D, Van Lommel A, Rőth E, Sztaricskai F, Herczegh P, and Naesens L
- Subjects
- Animals, Antiviral Agents chemistry, Cell Line, Cytoplasm drug effects, Dogs, Glycopeptides chemistry, Humans, Influenza A Virus, H1N1 Subtype drug effects, Influenza A Virus, H1N1 Subtype physiology, Influenza A Virus, H3N2 Subtype drug effects, Influenza A Virus, H3N2 Subtype physiology, Influenza A virus physiology, Influenza B virus physiology, Influenza, Human drug therapy, Influenza, Human virology, Molecular Structure, Virus Internalization drug effects, Virus Replication drug effects, Antiviral Agents pharmacology, Cytoplasm virology, Glycopeptides pharmacology, Influenza A virus drug effects, Influenza B virus drug effects
- Abstract
We report on a new anti-influenza virus agent, SA-19, a lipophilic glycopeptide derivative consisting of aglycoristocetin coupled to a phenylbenzyl-substituted cyclobutenedione. In Madin-Darby canine kidney cells infected with influenza A/H1N1, A/H3N2, or B virus, SA-19 displayed a 50% antivirally effective concentration of 0.60 μM and a selectivity index (ratio of cytotoxic versus antiviral concentration) of 112. SA-19 was 11-fold more potent than unsubstituted aglycoristocetin and was active in human and nonhuman cell lines. Virus yield at 72 h p.i. was reduced by 3.6 logs at 0.8 μM SA-19. In contrast to amantadine and oseltamivir, SA-19 did not select for resistance upon prolonged virus exposure. SA-19 was shown to inhibit an early postbinding step in virus replication. The compound had no effect on hemagglutinin (HA)-mediated membrane fusion in an HA-polykaryon assay and did not inhibit the low-pH-induced refolding of the HA in a tryptic digestion assay. However, a marked inhibitory effect on the transduction exerted by retroviral pseudoparticles carrying an HA or vesicular stomatitis virus glycoprotein (VSV-G) fusion protein was noted, suggesting that SA-19 targets a cellular factor with a role in influenza virus and VSV entry. Using confocal microscopy with antinucleoprotein staining, SA-19 was proven to completely prevent the influenza virus nuclear entry. This virus arrest was characterized by the formation of cytoplasmic aggregates. SA-19 appeared to disturb the endocytic uptake and trap the influenza virus in vesicles distinct from early, late, or recycling endosomes. The aglycoristocetin derivative SA-19 represents a new class of potent and broad-acting influenza virus inhibitors with potential clinical relevance.
- Published
- 2012
- Full Text
- View/download PDF