1. Behavioral and synaptic alterations relevant to obsessive-compulsive disorder in mice with increased EAAT3 expression.
- Author
-
Delgado-Acevedo C, Estay SF, Radke AK, Sengupta A, Escobar AP, Henríquez-Belmar F, Reyes CA, Haro-Acuña V, Utreras E, Sotomayor-Zárate R, Cho A, Wendland JR, Kulkarni AB, Holmes A, Murphy DL, Chávez AE, and Moya PR
- Subjects
- Animals, Cell Line, Clomipramine pharmacology, Disease Models, Animal, Excitatory Amino Acid Transporter 3 genetics, Fluoxetine pharmacology, Gene Expression genetics, Mice, Mice, Transgenic, Neuroblastoma, Patch-Clamp Techniques, Selective Serotonin Reuptake Inhibitors pharmacology, Anxiety metabolism, Behavior, Animal physiology, Calcium-Calmodulin-Dependent Protein Kinase Type 2 metabolism, Cerebral Cortex metabolism, Excitatory Amino Acid Transporter 3 metabolism, Neostriatum metabolism, Neuronal Plasticity physiology, Obsessive-Compulsive Disorder metabolism
- Abstract
Obsessive-compulsive disorder (OCD) is a severe, chronic neuropsychiatric disorder with a strong genetic component. The SLC1A1 gene encoding the neuronal glutamate transporter EAAT3 has been proposed as a candidate gene for this disorder. Gene variants affecting SLC1A1 expression in human brain tissue have been associated with OCD. Several mouse models fully or partially lacking EAAT3 have shown no alterations in baseline anxiety-like or repetitive behaviors. We generated a transgenic mouse model (EAAT3
glo ) to achieve conditional, Cre-dependent EAAT3 overexpression and evaluated the overall impact of increased EAAT3 expression at behavioral and synaptic levels. Mice with EAAT3 overexpression driven by CaMKIIα-promoter (EAAT3glo /CMKII) displayed increased anxiety-like and repetitive behaviors that were both restored by chronic, but not acute, treatment with fluoxetine or clomipramine. EAAT3glo /CMKII mice also displayed greater spontaneous recovery of conditioned fear. Electrophysiological and biochemical analyses at corticostriatal synapses of EAAT3glo /CMKII mice revealed changes in NMDA receptor subunit composition and altered NMDA-dependent synaptic plasticity. By recapitulating relevant behavioral, neurophysiological, and psychopharmacological aspects, our results provide support for the glutamatergic hypothesis of OCD, particularly for the increased EAAT3 function, and provide a valuable animal model that may open novel therapeutic approaches to treat this devastating disorder.- Published
- 2019
- Full Text
- View/download PDF