1. Using machine learning to predict outcomes following open abdominal aortic aneurysm repair.
- Author
-
Li B, Aljabri B, Verma R, Beaton D, Eisenberg N, Lee DS, Wijeysundera DN, Forbes TL, Rotstein OD, de Mestral C, Mamdani M, Roche-Nagle G, and Al-Omran M
- Subjects
- Humans, Bayes Theorem, Vascular Surgical Procedures adverse effects, Plastic Surgery Procedures, Coronary Artery Disease, Aortic Aneurysm, Abdominal diagnostic imaging, Aortic Aneurysm, Abdominal surgery
- Abstract
Objective: Prediction of outcomes following open abdominal aortic aneurysm (AAA) repair remains challenging with a lack of widely used tools to guide perioperative management. We developed machine learning (ML) algorithms that predict outcomes following open AAA repair., Methods: The Vascular Quality Initiative (VQI) database was used to identify patients who underwent elective open AAA repair between 2003 and 2023. Input features included 52 preoperative demographic/clinical variables. All available preoperative variables from VQI were used to maximize predictive performance. The primary outcome was in-hospital major adverse cardiovascular event (MACE; composite of myocardial infarction, stroke, or death). Secondary outcomes were individual components of the primary outcome, other in-hospital complications, and 1-year mortality and any reintervention. We split our data into training (70%) and test (30%) sets. Using 10-fold cross-validation, six ML models were trained using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score. The top 10 predictive features in our final model were determined based on variable importance scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, rurality, median area deprivation index, proximal clamp site, prior aortic surgery, and concomitant procedures., Results: Overall, 12,027 patients were included. The primary outcome of in-hospital MACE occurred in 630 patients (5.2%). Compared with patients without a primary outcome, those who developed in-hospital MACE were older with more comorbidities, demonstrated poorer functional status, had more complex aneurysms, and were more likely to require concomitant procedures. Our best performing prediction model for in-hospital MACE was XGBoost, achieving an AUROC of 0.93 (95% confidence interval, 0.92-0.94). Comparatively, logistic regression had an AUROC of 0.71 (95% confidence interval, 0.70-0.73). For secondary outcomes, XGBoost achieved AUROCs between 0.84 and 0.94. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.05. These findings highlight the excellent predictive performance of the XGBoost model. The top three predictive features in our algorithm for in-hospital MACE following open AAA repair were: (1) coronary artery disease; (2) American Society of Anesthesiologists classification; and (3) proximal clamp site. Model performance remained robust on all subgroup analyses., Conclusions: Open AAA repair outcomes can be accurately predicted using preoperative data with our ML models, which perform better than logistic regression. Our automated algorithms can help guide risk-mitigation strategies for patients being considered for open AAA repair to improve outcomes., (Copyright © 2023 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF