1. Quercetin Ameliorates Myocardial Injury in Diabetic Rats by Regulating Autophagy and Apoptosis through AMPK/mTOR Signaling Pathway.
- Author
-
Chen YF, Qiu Q, Wang L, Li XR, Zhou S, Wang H, Jiang WD, Geng JY, Qin-Gao, Tang B, Wang HJ, and Kang PF
- Subjects
- Animals, Male, Rats, Sprague-Dawley, Rats, Disease Models, Animal, Myocardium metabolism, Myocardium pathology, Streptozocin, Diabetic Cardiomyopathies etiology, Diabetic Cardiomyopathies drug therapy, Diabetic Cardiomyopathies metabolism, Diabetic Cardiomyopathies prevention & control, Phytotherapy, Beclin-1 metabolism, Oxidative Stress drug effects, Diabetes Mellitus, Type 2 drug therapy, Diabetes Mellitus, Type 2 metabolism, Diabetes Mellitus, Type 2 complications, Autophagy drug effects, Apoptosis drug effects, TOR Serine-Threonine Kinases metabolism, Quercetin pharmacology, Signal Transduction drug effects, Diabetes Mellitus, Experimental drug therapy, Diabetes Mellitus, Experimental metabolism, AMP-Activated Protein Kinases metabolism
- Abstract
A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo . Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo . Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.
- Published
- 2024
- Full Text
- View/download PDF