Victor Magron, Mohab Safey El Din, Trung-Hieu Vu, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Equipe Polynomial OPtimization (LAAS-POP), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DesCartes funded by the CREATE Programme on AI-based Decision making in Critical Urban Systems, FastQI funded by the institute Quantum technologies in Occitanie, EPICS funded by the Gaspard Monge Program for Optimization and operationnal research, Fondation Jacques Hadamard, ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), ANR-18-ERC2-0004,COPS,Optimisation garantie pour la vérification des systèmes cyber-physiques(2018), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019), Magron, Victor, Artificial and Natural Intelligence Toulouse Institute - - ANITI2019 - ANR-19-P3IA-0004 - P3IA - VALID, TREMPLIN-ERC - Optimisation garantie pour la vérification des systèmes cyber-physiques - - COPS2018 - ANR-18-ERC2-0004 - TERC - VALID, Polynomial Optimization, Efficiency through Moments and Algebra - POEMA - - H20202019-01-01 - 2022-12-31 - 813211 - VALID, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, and European Project: 813211,H2020,POEMA(2019)
Assessing non-negativity of multivariate polynomials over the reals, through the computation of {\em certificates of non-negativity}, is a topical issue in polynomial optimization. This is usually tackled through the computation of {\em sums-of-squares decompositions} which rely on efficient numerical solvers for semi-definite programming. This method faces two difficulties. The first one is that the certificates obtained this way are {\em approximate} and then non-exact. The second one is due to the fact that not all non-negative polynomials are sums-of-squares. In this paper, we build on previous works by Parrilo, Nie, Demmel and Sturmfels who introduced certificates of non-negativity modulo {\em gradient ideals}. We prove that, actually, such certificates can be obtained {\em exactly}, over the rationals if the polynomial under consideration has rational coefficients and we provide {\em exact} algorithms to compute them. We analyze the bit complexity of these algorithms and deduce bit size bounds of such certificates., Comment: 24 pages, 2 tables