Leonardo J. Magnoni, Isabelle Leguen, Johan W. Schrama, Sara C. Novais, Inge Geurden, Patrick Prunet, Rodrigo O. A. Ozório, Ep H. Eding, Marco F.L. Lemos, Centro Interdisciplinar de Investigaçao Marinha e Ambiental (CIIMA), Marine and Environmental Sciences Centre (MARE UC), Universidade de Coimbra [Coimbra], Aquaculture and Fisheries Group, Wageningen Institute of Animal Science, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Nutrition, Métabolisme, Aquaculture (NuMéA), Institut National de la Recherche Agronomique (INRA)-Université de Pau et des Pays de l'Adour (UPPA), and Fundação para a Ciência e a Tecnologia
The aquatic metabolic unit used in this study was cofounded by The Netherlands Organization for Scientific Research (code 805-34.025). Currently it is part of a large-scale EU research facility program. The study was funded by the EU-FP7 project AQUAEXCEL (262336). LM is currently supported by a Fundação para a Ciência e a Tecnologia (FCT) research position (IF/01314/2014/CP1231/CT0001) from Portugal. This study had also the support of FCT through strategic projects UID/Multi/04423/2019 and UID/MAR/04292/2013 granted to CIIMAR and MARE, respectively. SN has support from FCT grant (SFRH/BPD/94500/2013). This work was also supported by the Integrated Programme of SR&TD “Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate” (reference Centro01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, European Union, through the European Regional Development Fund. In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyteimbalanced diet, DEB 700 mEq Kg−1 ) and environmental (hypoxia, 4.5 mg O2 L −1 ) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg−1 and normoxia, 7.9 or mg O2 L −1 ) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyteimbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge. info:eu-repo/semantics/publishedVersion