Xigang Liu, Wenming Wang, Jun Liu, Rae Eden Yumul, Lijuan Ji, Xia Cui, Binglian Zheng, Chunyan Liu, Yun Ju Kim, Thanh Theresa Dinh, Manu Agarwal, Xiaofeng Cao, Jun Yan, Guiliang Tang, Xuemei Chen, and Qu, Li-Jia
Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits “slicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms., Author Summary Stem cells have the capacity to self renew while producing daughter cells that undergo differentiation. While some stem cells remain as stem cells throughout the life of an organism, others are programmed to terminate within developmental contexts. It is presumed that stem cell termination is simply the differentiation of stem cells into a specific cell type(s). Using floral stem cells as a model, we show that the temporally regulated termination of floral stem cells is genetically separable from stem cell differentiation, and thus we reveal the presence of a temporal program of stem cell regulation. We show that two microRNAs, miR172 and miR165/166, and two argonaute family proteins, ARGONAUTE1 (AGO1) and AGO10, regulate the termination of floral stem cells. We establish the homeodomain-leucine zipper (DH-Zip) genes, targets of miR165/166, as crucial factors in floral stem cell termination. While AGO1 is the major miRNA effector, the molecular function of AGO10 has been elusive. Here we demonstrate that AGO10 is also a miRNA effector in that AGO10 is associated with miRNAs in vivo and exhibits “slicer” activity in vitro. Despite the similar biochemical activities, AGO1 and AGO10 promote floral stem cell termination by exerting opposite effects on miR165/166.