5 results on '"Lan TH"'
Search Results
2. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana.
- Author
-
Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, and Paterson AH
- Subjects
- DNA, Plant genetics, Genes, Plant, Genetic Linkage, Polymorphism, Genetic genetics, Arabidopsis genetics, Brassica genetics, Chromosome Mapping, Expressed Sequence Tags
- Abstract
A detailed comparative map of Brassica oleracea and Arabidopsis thaliana has been established based largely on mapping of Arabidopsis ESTs in two Arabidopsis and four Brassica populations. Based on conservative criteria for inferring synteny, "one to one correspondence" between Brassica and Arabidopsis chromosomes accounted for 57% of comparative loci. Based on 186 corresponding loci detected in B. oleracea and A. thaliana, at least 19 chromosome structural rearrangements differentiate B. oleracea and A. thaliana orthologs. Chromosomal duplication in the B. oleracea genome was strongly suggested by parallel arrangements of duplicated loci on different chromosomes, which accounted for 41% of loci mapped in Brassica. Based on 367 loci mapped, at least 22 chromosomal rearrangements differentiate B. oleracea homologs from one another. Triplication of some Brassica chromatin and duplication of some Arabidopsis chromatin were suggested by data that could not be accounted for by the one-to-one and duplication models, respectively. Twenty-seven probes detected three or more loci in Brassica, which represent 25.3% of the 367 loci mapped in Brassica. Thirty-one probes detected two or more loci in Arabidopsis, which represent 23.7% of the 262 loci mapped in Arabidopsis. Application of an EST-based, cross-species genomic framework to isolation of alleles conferring phenotypes unique to Brassica, as well as the challenges and opportunities in extrapolating genetic information from Arabidopsis to Brassica and to more distantly related crops, are discussed.
- Published
- 2000
- Full Text
- View/download PDF
3. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model.
- Author
-
Liu SC, Kowalski SP, Lan TH, Feldmann KA, and Paterson AH
- Subjects
- Chromosome Mapping statistics & numerical data, Crosses, Genetic, Genetic Linkage, Genome, Plant, Genotype, Homozygote, Mathematics, Models, Genetic, Recombination, Genetic, Arabidopsis genetics, Chromosome Mapping methods
- Abstract
We demonstrate a method for developing populations suitable for genome-wide high-resolution genetic linkage mapping, by recurrent intermating among F2 individuals derived from crosses between homozygous parents. Comparison of intermated progenies to F2 and "recombinant inbred" (RI) populations from the same pedigree corroborate theoretical expectations that progenies intermated for four generations harbor about threefold more information for estimating recombination fraction between closely linked markers than either RI-selfed or F2 individuals (which are, in fact, equivalent in this regard). Although intermated populations are heterozygous, homozygous "intermated recombinant inbred" (IRI) populations can readily be generated, combining additional information afforded by intermating with the permanence of RI populations. Intermated populations permit fine-mapping of genetic markers throughout a genome, helping to bridge the gap between genetic map resolution and the DNA-carrying capacity of modern cloning vectors, thus facilitating merger of genetic and physical maps. Intermating can also facilitate high-resolution mapping of genes and QTLs, accelerating mapbased cloning. Finally, intermated populations will facilitate investigation of other fundamental genetic questions requiring a genome-wide high-resolution analysis, such as comparative mapping of distantly related species, and the genetic basis of heterosis.
- Published
- 1996
- Full Text
- View/download PDF
4. QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana.
- Author
-
Kowalski SP, Lan TH, Feldmann KA, and Paterson AH
- Subjects
- Chromosome Mapping, Time Factors, Arabidopsis genetics, Arabidopsis growth & development, Genetic Variation
- Abstract
A segregating F2 population of Arabidopsis thaliana derived from a cross between the late-flowering ecotype Hannover/Münden (HM) and the early-flowering ectoype Wassilewskija (WS) was analyzed for flowering time and other morphological traits. Two unlinked quantitative trait loci (QTLs) affecting days to first flower (DFF-a and DFF-b) mapped to chromosome 5. QTLs which affect node number (NN), leaf length at flowering (LLF), and lead length at 35 days (LL35) also mapped to chromosome 5; LLF-a, LL35-a, NN-a map to the same region of chromosome 5 as DFF-a; LLF-b and LL35-bmap to the same region of chromosome 5 as DFF-b. Another QTL affecting leaf length at flowering (LLF-c) maps to chromosome 3. The proximity of DFF-a, LLF-a, LL35-a and NN-a, as well as the similarity in gene action among these QTLs (additivity), suggest that they may be pleiotropic consequences of a single gene at this locus. Similarly, LL35-b and LLF-b map near each other and both display recessive gene action, again suggesting the possibility of pleiotropy. DFF-b, which also maps near LL35-b and LLF-b, displays largely additive gene action (although recessive gene action could not be ruled out). This suggests that DFF-b may represent a different gene from LL35-b and/or LLF-b. DFF-a maps near two previously identified mutants: co (which also affects flowering time and displays gene action consistent with additivity) and flc.(ABSTRACT TRUNCATED AT 250 WORDS)
- Published
- 1994
- Full Text
- View/download PDF
5. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization.
- Author
-
Kowalski SP, Lan TH, Feldmann KA, and Paterson AH
- Subjects
- Base Sequence, Chromosome Inversion, Crosses, Genetic, Genetic Linkage, Genome, Plant, Polymorphism, Restriction Fragment Length, Recombination, Genetic, Arabidopsis genetics, Brassica genetics, Chromosome Mapping, Conserved Sequence
- Abstract
The chromosomes of Arabidopsis thaliana and Brassica oleracea have been extensively rearranged since the divergence of these species; however, conserved regions are evident. Eleven regions of conserved organization were detected, ranging from 3.7 to 49.6 cM in A. thaliana, spanning 158.2 cM (24.6%) of the A. thaliana genome, and 245 cM (29.9%) of the B. oleracea genome. At least 17 translocations and 9 inversions distinguish the genomes of A. thaliana and B. oleracea. In one case B. oleracea homoeologs show a common marker order, which is distinguished from the A. thaliana order by a rearrangement, indicating that the lineages of A. thaliana and B. oleracea diverged prior to chromosomal duplication in the Brassica lineage (for at least this chromosome). Some chromosomal segments in B. oleracea appear to be triplicated, indicating the need for reevaluation of a classical model for Brassica chromosome evolution by duplication. The distribution of duplicated loci mapped for about 13% of the DNA probes studied in A. thaliana suggests that ancient duplications may also have occurred in Arabidopsis. The degree of chromosomal divergence between A. thaliana and B. oleracea appears greater than that found in other confamilial species for which comparative maps are available.
- Published
- 1994
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.