1. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis .
- Author
-
Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL, Machius M, Nimchuk ZL, Yang L, Chung EH, El Kasmi F, Hyunh M, Osborne Nishimura E, Sondek JE, and Dangl JL
- Subjects
- Arabidopsis immunology, Arabidopsis microbiology, Arabidopsis Proteins genetics, Arabidopsis Proteins immunology, Binding Sites, Cell Death genetics, Cell Death immunology, Crystallography, X-Ray, Erwinia pathogenicity, Erwinia physiology, Host-Pathogen Interactions, Models, Molecular, Mutation, Plant Diseases immunology, Plant Diseases microbiology, Plant Immunity genetics, Plant Proteins genetics, Plant Proteins immunology, Protein Binding, Protein Interaction Domains and Motifs, Protein Structure, Secondary, Pseudomonas syringae pathogenicity, Pseudomonas syringae physiology, Recombinant Proteins chemistry, Recombinant Proteins genetics, Recombinant Proteins immunology, Signal Transduction, Nicotiana genetics, Nicotiana immunology, Nicotiana microbiology, Type III Secretion Systems genetics, Type III Secretion Systems metabolism, Arabidopsis chemistry, Arabidopsis genetics, Arabidopsis Proteins chemistry, Gene Expression Regulation, Plant, Plant Diseases genetics, Plant Proteins chemistry
- Abstract
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll-interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 ( RBA1 ), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR-TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that "truncated" NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system.
- Published
- 2017
- Full Text
- View/download PDF