2 results
Search Results
2. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing
- Author
-
Dan-Liang Wen, Juergen Brugger, De-Heng Sun, Liu Xin, Xiao-Sheng Zhang, Qian Hengyi, and Hai-Tao Deng
- Subjects
Materials science ,harvesting energy ,Interface (computing) ,Capacitive sensing ,Fibroin ,Wearable computer ,Nanotechnology ,array ,02 engineering and technology ,Substrate (printing) ,self-powered sensors ,010402 general chemistry ,01 natural sciences ,wearable electronics ,sensor ,General Materials Science ,Electrical and Electronic Engineering ,Triboelectric effect ,Wearable technology ,Renewable Energy, Sustainability and the Environment ,business.industry ,paper ,triboelectric nanogenerators ,humidity ,Nanogenerator ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,hybrid nanogenerator ,silk fibroin ,network ,0210 nano-technology ,business ,printed electrodes - Abstract
The rapid development of wearable sensing technology exhibits unprecedented opportunities for artificial intelligence by establishing an interactive interface between the physical and the virtual worlds. Energy preservation and multi-functional integration are central for the enhancement of perception and sustainability of wearable electronics. Herein, to address the above two critical challenges, we presented a printed silk-fibroin-based triboelectric nanogenerator (PS-TENG), which can efficiently scavenge the bio-mechanical energy and precisely detect components of environmental humidity and human body motions simultaneously. An industrial mass-fabrication technology, i.e. screen-printing process, was successfully optimized to manufacture graphite-based microscale surface patterns atop polymeric soft substrate to form interdigital electrodes, which was covered by a thin layer of silk fibroin to realize the PS-TENG. The proposed wearable PS-TENG exhibited a remarkable output performance, and the voltage, the current and the power density achieved up to 666 V, 174.6 μA, 412 μW/cm2, respectively. Furthermore, this ultra-thin foldable PS-TENG possesses incredible features for multi-functional wearable sensing. With the help of the unique selective absorption property of silk fibroin, it was firstly reported that the existing states of water molecules (i.e., liquid and gaseous) in the air were successfully distinguished. Moreover, as attractive potential applications, it was demonstrated to accurately discriminate the health situation of human body (i.e., respiratory monitoring and joints motion recognizing) based on the capacitive and the triboelectric principles respectively, which is a novel combination of passive sensing and active sensing mechanisms within a single wearable device.
- Published
- 2019
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.