1. Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier.
- Author
-
Müller SM, Ebert F, Bornhorst J, Galla HJ, Francesconi KA, and Schwerdtle T
- Subjects
- Animals, Arsenicals chemistry, Blotting, Western, Cell Line, Fatty Acids chemistry, Immunohistochemistry, Swine, Arsenic chemistry, Cerebrospinal Fluid metabolism, Hydrocarbons chemistry
- Abstract
Lipid-soluble arsenicals, so-called arsenolipids, have gained a lot of attention in the last few years because of their presence in many seafoods and reports showing substantial cytotoxicity emanating from arsenic-containing hydrocarbons (AsHCs), a prominent subgroup of the arsenolipids. More recent in vivo and in vitro studies indicate that some arsenolipids might have adverse effects on brain health. In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration-dependent disruption of the barrier within 72 h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system., (Copyright © 2018 Elsevier GmbH. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF