1. Eco-friendly supercapacitors based on biodegradable poly(3-hydroxy-butyrate) and ionic liquids
- Author
-
Paolo Milani, Paolo Saettone, Tommaso Santaniello, Gianluca Generali, Mauro Comes Franchini, Lorenzo Migliorini, Francesca Borghi, Migliorini L., Santaniello T., Borghi F., Saettone P., Comes Franchini M., Generali G., and Milani P.
- Subjects
Materials science ,General Chemical Engineering ,Supersonic cluster beam deposition ,Nanotechnology ,Ionic liquid ,Electrochemistry ,Polyhydroxyalkanoate ,Bioplastic ,Article ,Energy storage ,ionic liquids ,lcsh:Chemistry ,chemistry.chemical_compound ,General Materials Science ,Electronics ,Supercapacitor ,Green electronic ,supercapacitors ,polyhydroxyalkanoates ,Environmentally friendly ,EDLC ,lcsh:QD1-999 ,chemistry ,green electronics ,Electrode - Abstract
The interest for biodegradable electronic devices is rapidly increasing for application in the field of wearable electronics, precision agriculture, biomedicine, and environmental monitoring. Energy storage devices integrated on polymeric substrates are of particular interest to enable the large-scale on field use of complex devices. This work presents a novel class of eco-friendly supercapacitors based on biodegradable poly(3-hydroxybutyrrate) PHB, ionic liquids, and cluster-assembled gold electrodes. By electrochemical characterization, we demonstrate the possibility of tuning the supercapacitor energetic performance according to the type and amount of the ionic liquid employed. Our devices based on hydrophobic plastic materials are stable under cyclic operation and resistant to moisture exposure.
- Published
- 2020