1. Variability and bias assessment in breast ADC measurement across multiple systems.
- Author
-
Keenan KE, Peskin AP, Wilmes LJ, Aliu SO, Jones EF, Li W, Kornak J, Newitt DC, and Hylton NM
- Subjects
- Equipment Design, Equipment Failure Analysis methods, Female, Humans, Image Interpretation, Computer-Assisted instrumentation, Reproducibility of Results, Sensitivity and Specificity, Artifacts, Equipment Failure Analysis instrumentation, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging instrumentation, Magnetic Resonance Imaging methods, Phantoms, Imaging
- Abstract
Purpose: To assess the ability of a recent, anatomically designed breast phantom incorporating T1 and diffusion elements to serve as a quality control device for quantitative comparison of apparent diffusion coefficient (ADC) measurements calculated from diffusion-weighted MRI (DWI) within and across MRI systems., Materials and Methods: A bilateral breast phantom incorporating multiple T1 and diffusion tissue mimics and a geometric distortion array was imaged with DWI on 1.5 Tesla (T) and 3.0T scanners from two different manufacturers, using three different breast coils (three configurations total). Multiple measurements were acquired to assess the bias and variability of different diffusion weighted single-shot echo-planar imaging sequences on the scanner-coil systems., Results: The repeatability of ADC measurements was mixed: the standard deviation relative to baseline across scanner-coil-sequences ranged from low variability (0.47, 95% confidence interval [CI]: 0.22-1.00) to high variability (1.69, 95% CI: 0.17-17.26), depending on material, with the lowest and highest variability from the same scanner-coil-sequence. Assessment of image distortion showed that right/left measurements of the geometric distortion array were 1 to 16% larger on the left coil side compared with the right coil side independent of scanner-coil systems, diffusion weighting, and phase-encoding direction., Conclusion: This breast phantom can be used to measure scanner-coil-sequence bias and variability for DWI. When establishing a multisystem study, this breast phantom may be used to minimize protocol differences (e.g., due to available sequences or shimming technique), to correct for bias that cannot be minimized, and to weigh results from each system depending on respective variability. J. Magn. Reson. Imaging 2016. J. MAGN. RESON. IMAGING 2016;44:846-855., (© 2016 International Society for Magnetic Resonance in Medicine.)
- Published
- 2016
- Full Text
- View/download PDF