1. Localized Region Contrast for Enhancing Self-Supervised Learning in Medical Image Segmentation
- Author
-
Yan, Xiangyi, Naushad, Junayed, You, Chenyu, Tang, Hao, Sun, Shanlin, Han, Kun, Ma, Haoyu, Duncan, James, and Xie, Xiaohui
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,Machine Learning (cs.LG) - Abstract
Recent advancements in self-supervised learning have demonstrated that effective visual representations can be learned from unlabeled images. This has led to increased interest in applying self-supervised learning to the medical domain, where unlabeled images are abundant and labeled images are difficult to obtain. However, most self-supervised learning approaches are modeled as image level discriminative or generative proxy tasks, which may not capture the finer level representations necessary for dense prediction tasks like multi-organ segmentation. In this paper, we propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation. Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss. Through extensive experiments on three multi-organ segmentation datasets, we demonstrate that integrating LRC to an existing self-supervised method in a limited annotation setting significantly improves segmentation performance. Moreover, we show that LRC can also be applied to fully-supervised pre-training methods to further boost performance.
- Published
- 2023
- Full Text
- View/download PDF