1. Asynchronous Algorithmic Alignment with Cocycles
- Author
-
Dudzik, Andrew, von Glehn, Tamara, Pascanu, Razvan, and Veličković, Petar
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Data Structures and Algorithms (cs.DS) ,Mathematics - Commutative Algebra ,Commutative Algebra (math.AC) ,Machine Learning (cs.LG) - Abstract
State-of-the-art neural algorithmic reasoners make use of message passing in graph neural networks (GNNs). But typical GNNs blur the distinction between the definition and invocation of the message function, forcing a node to send messages to its neighbours at every layer, synchronously. When applying GNNs to learn to execute dynamic programming algorithms, however, on most steps only a handful of the nodes would have meaningful updates to send. One, hence, runs the risk of inefficiencies by sending too much irrelevant data across the graph -- with many intermediate GNN steps having to learn identity functions. In this work, we explicitly separate the concepts of node state update and message function invocation. With this separation, we obtain a mathematical formulation that allows us to reason about asynchronous computation in both algorithms and neural networks.
- Published
- 2023
- Full Text
- View/download PDF