1. UGC 4211: A Confirmed Dual Active Galactic Nucleus in the Local Universe at 230 pc Nuclear Separation
- Author
-
Michael J. Koss, Ezequiel Treister, Darshan Kakkad, J. Andrew Casey-Clyde, Taiki Kawamuro, Jonathan Williams, Adi Foord, Benny Trakhtenbrot, Franz E. Bauer, George C. Privon, Claudio Ricci, Richard Mushotzky, Loreto Barcos-Munoz, Laura Blecha, Thomas Connor, Fiona Harrison, Tingting Liu, Macon Magno, Chiara M. F. Mingarelli, Francisco Muller-Sanchez, Kyuseok Oh, T. Taro Shimizu, Krista Lynne Smith, Daniel Stern, Miguel Parra Tello, and C. Megan Urry
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
We present multi-wavelength high-spatial resolution (~0.1'', 70 pc) observations of UGC 4211 at z=0.03474, a late-stage major galaxy merger at the closest nuclear separation yet found in near-IR imaging (0.32'', ~230 pc projected separation). Using Hubble Space Telescope/STIS, VLT/MUSE+AO, Keck/OSIRIS+AO spectroscopy, and ALMA observations, we show that the spatial distribution, optical and NIR emission lines, and millimeter continuum emission are all consistent with both nuclei being powered by accreting supermassive black holes (SMBHs). Our data, combined with common black hole mass prescriptions, suggests that both SMBHs have similar masses, log MBH~8.1 (south) and log MBH~8.3 (north), respectively. The projected separation of 230 pc (~6X the black hole sphere of influence) represents the closest-separation dual AGN studied to date with multi-wavelength resolved spectroscopy and shows the potential of nuclear (, 19 pages, 7 figures, 2 tables, published in ApJL
- Published
- 2023
- Full Text
- View/download PDF