1. JWST Low-Resolution MIRI Spectral Observations of SN~2021aefx: High-density Burning in a Type Ia Supernova
- Author
-
J. M. DerKacy, C. Ashall, P. Hoeflich, E. Baron, B. J. Shappee, D. Baade, J. Andrews, K. A. Bostroem, P. J. Brown, C. R. Burns, A. Burrow, A. Cikota, T. de Jaeger, A. Do, Y. Dong, I. Dominguez, L. Galbany, E. Y. Hsiao, E. Karamehmetoglu, K. Krisciunas, S. Kumar, J. Lu, T. B. Mera Evans, J. R. Maund, P. Mazzali, K. Medler, N. Morrell, F. Patat, M. M. Phillips, M. Shahbandeh, S. Stangl, C. P. Stevens, M. D. Stritzinger, N. B. Suntzeff, C. M. Telesco, M. A. Tucker, S. Valenti, L. Wang, Y. Yang, S. W. Jha, and L. A. Kwok
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frame B-band maximum light. The spectrum ranges from 4-14 um, and shows many unique qualities including a flat-topped [Ar III] 8.991 um profile, a strongly tilted [Co III] 11.888 um feature, and multiple stable Ni lines. These features provide critical information about the physics of the explosion. The observations are compared to synthetic spectra from detailed NLTE multi-dimensional models. The results of the best-fitting model are used to identify the components of the spectral blends and provide a quantitative comparison to the explosion physics. Emission line profiles and the presence of electron capture (EC) elements are used to constrain the mass of the exploding white dwarf (WD) and the chemical asymmetries in the ejecta. We show that the observations of SN 2021aefx are consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass (Mch) WD at a viewing angle of -30 degrees relative to the point of the deflagration-to-detonation transition. From the strength of the stable Ni lines we determine that there is little to no mixing in the central regions of the ejecta. Based on both the presence of stable Ni and the Ar velocity distributions, we obtain a strict lower limit of 1.2 Msun of the initial WD, implying that most sub-Mch explosions models are not viable models for SN 2021aefx. The analysis here shows the crucial importance of MIR spectra for distinguishing between explosion scenarios for SNe Ia., Comment: 21 pages, 9 figures, 4 tables, accepted to ApJL; updated to accepted version
- Published
- 2023
- Full Text
- View/download PDF