43 results on '"Shupe, D."'
Search Results
2. Mid-infrared spectroscopy of infrared-luminous galaxies at z similar to 0.5-3
- Author
-
Hernán-Caballero, A, Pérez-Fournon, I, Hatziminaoglou, E, Afonso-Luis, A, Rowan-Robinson, M, Rigopoulou, D, Farrah, D, Lonsdale, C J, Babbedge, T, Clements, D, Serjeant, S, Pozzi, F, Vaccari, M, Montenegro-Montes, F M, Valtchanov, I, González-Solares, E, Oliver, S, Shupe, D, Gruppioni, C, Vila-Vilaró, B, Lari, C, and La Franca, F
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present results on low-resolution mid-infrared (MIR) spectra of 70 IR-luminous galaxies obtained with the infrared spectrograph (IRS) onboard Spitzer. We selected sources from the European Large Area Infrared Survey with S 15 > 0.8 mJy and photometric or spectroscopic z > 1. About half of the samples are quasi-stellar objects (QSOs) in the optical, while the remaining sources are galaxies, comprising both obscured active galactic nuclei (AGN) and starbursts. Redshifts were obtained from optical spectroscopy, photometric redshifts and the IRS spectra. The later turn out to be reliable for obscured and/or star-forming sources, thus becoming an ideal complement to optical spectroscopy for redshift estimation. We estimate monochromatic luminosities at several rest-frame wavelengths, equivalent widths and luminosities for the polycyclic aromatic hydrocarbon (PAH) features, and strength of the silicate feature in individual spectra. We also estimate integrated 8-1000 μm IR luminosities via spectral energy distribution fitting to MIR and far-IR (FIR) photometry from the Spitzer Wide-Area Infrared Extragalactic survey and the MIR spectrum. Based on these measurements, we classify the spectra using well-known IR diagnostics, as well as a new one that we propose, into three types of source: those dominated by an unobscured AGN, mostly corresponding to optical quasars (QSOs), those dominated by an obscured AGN and starburst-dominated sources. Starbursts concentrate at z ∼ 0.6-1.0 favoured by the shift of the 7.7-μm PAH band into the selection 15-μm band, while AGN spread over the 0.5 < z < 3.1 range. Star formation rates (SFR) are estimated for individual sources from the luminosity of the PAH features. An estimate of the average PAH luminosity in QSOs and obscured AGN is obtained from the composite spectrum of all sources with reliable redshifts. The estimated mean SFR in the QSOs is 50-100 M ⊙ yr -1, but the implied FIR luminosity is 3-10 times lower than that obtained from stacking analysis of the FIR photometry, suggesting destruction of the PAH carriers by energetic photons from the AGN. The SFR estimated in obscured AGN is two to three times higher than in QSOs of similar MIR luminosity. This discrepancy might not be due to luminosity effects or selection bias alone, but could instead indicate a connection between obscuration and star formation. However, the observed correlation between silicate absorption and the slope of the NIR to MIR spectrum is compatible with the obscuration of the AGN emission in these sources being produced in a dust torus. © 2009 RAS.
- Published
- 2016
- Full Text
- View/download PDF
3. VVDS-SWIRE. Clustering evolution from a spectroscopic sample of galaxies with redshift 0.2 < z < 2.1 selected from Spitzer IRAC 3.6 μ m and 4.5 μ m photometry
- Author
-
de La Torre S., Le Fèvre O., Arnouts S., Guzzo L., Farrah D., Iovino A., Lonsdale C. J., Meneux B., Oliver S. J., Pollo A., Waddington I., Bottini D., Fang F., Garilli B., Le Brun V., Maccagni D., Picat J. P., Scaramella R., Scodeggio M., Shupe D., Surace J., Tresse L., Vettolani G., Zanichelli A., Adami C., Bardelli S., Bolzonella M., Cappi A., Charlot S., Ciliegi P., Contini T., Foucaud S., Franzetti P., Gavignaud I., Ilbert O., Lamareille F., McCracken H. J., Marinoni C., Mazure A., Merighi R., Paltani S., Pellò R., Pozzetti L., Radovich M., Zamorani G., Zucca E., Bondi M., Brinchmann J., Mellier Y., Merluzzi P., Temporin S., Vergani D., Walcher C. J., MARANO, BRUNO, BONGIORNO, ANGELA, CUCCIATI, OLGA, de La Torre S., Le Fèvre O., Arnouts S., Guzzo L., Farrah D., Iovino A., Lonsdale C. J., Meneux B., Oliver S. J., Pollo A., Waddington I., Bottini D., Fang F., Garilli B., Le Brun V., Maccagni D., Picat J. P., Scaramella R., Scodeggio M., Shupe D., Surace J., Tresse L., Vettolani G., Zanichelli A., Adami C., Bardelli S., Bolzonella M., Cappi A., Charlot S., Ciliegi P., Contini T., Foucaud S., Franzetti P., Gavignaud I., Ilbert O., Lamareille F., McCracken H. J., Marano B., Marinoni C., Mazure A., Merighi R., Paltani S., Pellò R., Pozzetti L., Radovich M., Zamorani G., Zucca E., Bondi M., Bongiorno A., Brinchmann J., Cucciati O., Mellier Y., Merluzzi P., Temporin S., Vergani D., and Walcher C. J.
- Subjects
Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Aims.By combining data from the VIMOS VLT Deep Survey (VVDS) with the Spitzer Wide-area InfraRed Extragalactic survey (SWIRE) we have built the currently largest spectroscopic sample of high redshift galaxies selected in the rest-frame near-infrared. We have obtained 2040 spectroscopic redshifts of galaxies with (m3.6)_AB < 21.5 at 3.6 μ m and 1255 spectroscopic redshifts of galaxies with (m4.5)_AB < 21. These allow us to investigate the clustering evolution of galaxies selected via their rest-frame near-infrared luminosity in the redshift range 0.2 < z < 2.1. Methods: We use the projected two-point correlation function w_p(r_p) to study the three dimensional clustering properties of galaxies detected at 3.6 μ m and 4.5 μ m with the InfraRed Array Camera (IRAC) in the SWIRE survey with measured spectroscopic redshifts from the first epoch VVDS. We compare these properties to those of a larger sample of 16672 SWIRE galaxies for which we have accurate photometric redshifts in the same field. Results: We find that in the 3.6 μ m and 4.5 μ m flux limited samples the apparent correlation length does not change from redshift ~2 to the present. The measured correlation lengths have a mean value of r0 ≃ 3.9±0.5 h-1 Mpc for the galaxies selected at 3.6 μ m and a mean value of r0 ≃ 4.4±0.5 h-1 Mpc for the galaxies selected at 4.5 μ m across the whole redshift range explored. These values are larger than those typicaly found for I-band selected galaxies at I_AB < 24 for which r0 varies from 2.69 h-1 Mpc to 3.63 h-1 Mpc between z = 0.5 to z = 2.1. We find that the difference in correlation length between I-band and 3.6-4.5 μm selected samples decreases with increasing redshift becoming comparable at z ≃ 1.5. We interpret this as evidence that galaxies with older stellar populations and galaxies actively forming stars reside in comparably over-dense environments at epochs earlier than z ≃ 1.5 supporting the recently reported flattening of the color-density relation at high redshift. The increasing difference in correlation length with cosmic time observed between rest-frame UV-optical and near-infrared selected samples could then be an indication that star formation is gradually shifting to lower density regions with decreasing redshift while the older passively evolving galaxies remain in the most over-dense peaks.
- Published
- 2007
4. The Herschel Multi-tiered Extragalactic Survey: HerMES
- Author
-
Oliver, S. J., Bock, J., Blain, A., Bridge, C., Cooray, A., Dowell, C. D., Levenson, L., Lu, N. Y., Marshall, J., Nguyen, H. T., Schulz, B., Shupe, D. L., Vieira, J. D., Viero, M., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.
- Published
- 2012
5. The Herschel Multi-tiered Extragalactic Survey: HerMES
- Author
-
HerMES Collaboration, Oliver, S. J., Bock, J., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., Beelen, A., Béthermin, M., Blain, A., Boselli, A., Bridge, C., Brisbin, D., Buat, V., Burgarella, D., Castro-Rodríguez, N., Cava, A., Chanial, P., Cirasuolo, M., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dubois, E. N., Dwek, E., Dye, S., Eales, S., Elbaz, D., Farrah, D., Feltre, A., Ferrero, P., Fiolet, N., Fox, M., Franceschini, A., Gear, W., Giovannoli, E., Glenn, J., Gong, Y., Solares, E. A. González, Griffin, M., Halpern, M., Harwit, M., Hatziminaoglou, E., Heinis, S., Hurley, P., Hwang, H. S., Hyde, A., Ibar, E., Ilbert, O., Isaak, K., Ivison, R. J., Lagache, G., Floc'h, E. Le, Levenson, L., Faro, B. Lo, Lu, N., Madden, S., Maffei, B., Magdis, G., Mainetti, G., Marchetti, L., Marsden, G., Marshall, J., Mortier, A. M. J., Nguyen, H. T., O'Halloran, B., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Patel, H., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rawlings, J. I., Raymond, G., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Portal, M. Sánchez, Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Viero, M., Vigroux, L., Wang, L., Ward, R., Wardlow, J., Wright, G., Xu, C. K., Zemcov, M., Science and Technology Facilities Council (STFC), Observatoire Astronomique de Marseille Provence (OAMP), Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ULTRALUMINOUS INFRARED GALAXIES ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,SPECTRAL ENERGY-DISTRIBUTIONS ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,infrared: galaxies ,surveys ,SUBMILLIMETER-SELECTED GALAXIES ,LARGE-SCALE STRUCTURE ,Astrophysics::Galaxy Astrophysics ,Science & Technology ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,1200-MU-M MAMBO SURVEY ,STAR-FORMATION HISTORY ,160 MU-M ,POLE TELESCOPE SURVEY ,0201 Astronomical And Space Sciences ,QB0495 ,[SDU]Sciences of the Universe [physics] ,Physical Sciences ,GOODS-N FIELD ,astro-ph.CO ,DEEP-FIELD-SOUTH ,galaxies: evolution ,submillimetre: galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results., Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepted
- Published
- 2012
- Full Text
- View/download PDF
6. The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts
- Author
-
Roseboom, I. G., Ivison, R. J., Greve, T. R., Amblard, A., Arumugam, V., Auld, R., Aussel, H., Bethermin, M., Blain, A., Bock, J., Boselli, A., Brisbin, D., Buat, V., Burgarella, D., Castro-Rodríguez, N., Cava, A., Chanial, P., Chapin, E., Chapman, S., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, S., Elbaz, D., Farrah, D., Franceschini, A., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Lagache, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Marsden, G., Morrison, G., Mortier, A. M. J., Nguyen, H. T., O’Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rawlings, J. I., Raymond, G., Rigopoulou, D., Rizzo, D., Rodighiero, G., Rowan-Robinson, M., Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Viero, M. P., Vigroux, L., Wardlow, J., Wang, L., Wright, G., Xu, C. K., Zemcov, M., Department of Physics and Astronomy [Brighton] (DPA), University of Sussex, Royal Observatory Edinburgh (ROE), University of Edinburgh, UK Astronomy Technology Centre (UK ATC), Science and Technology Facilities Council (STFC), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Department of Physics and Astronomy [Irvine], University of California [Irvine] (UCI), University of California-University of California, School of Physics and Astronomy [Cardiff], Cardiff University, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), CHANG, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Department of Astronomy [Ithaca], Cornell University, Instituto de Astrofisica de Canarias (IAC), Departamento de Astrofísica [La laguna], Universidad de La Laguna [Tenerife - SP] (ULL), University of British Columbia (UBC), Institute of Astronomy [Cambridge], University of Cambridge [UK] (CAM), Astrophysics Group, Blackett Laboratory, Imperial College London-Imperial College London, Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Herschel Science Center [Madrid], European Space Astronomy Centre (ESAC), European Space Agency (ESA)-European Space Agency (ESA), NASA Goddard Space Flight Center (GSFC), Dipartimento di Astronomia [Padova], Universita degli Studi di Padova, Department of Astrophysical and Planetary Sciences [Boulder], European Southern Observatory (ESO), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Infrared Processing and Analysis Center (IPAC), School of Physics and Astronomy [Manchester], University of Manchester [Manchester], Visual servoing in robotics, computer vision, and augmented reality (Lagadic), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Canada-France-Hawaii Telescope Corporation (CFHT), National Research Council of Canada (NRC)-Centre National de la Recherche Scientifique (CNRS)-University of Hawai'i [Honolulu] (UH), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), University of Lethbridge, Department of Physics [Oxford], University of Oxford [Oxford], Centre for Astrophysics Research [Hatfield], University of Hertfordshire [Hatfield] (UH), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), CHANG (CHANG), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Cornell University [New York], CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Smithsonian Institution-Harvard University [Cambridge], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Università degli Studi di Padova = University of Padua (Unipd), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Harvard University-Smithsonian Institution, and California Institute of Technology (CALTECH)-NASA
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 {\mu}m by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth {\tau} = ({\nu}/{\nu}0)^{\beta} where {\beta} = +1.8 and {\nu}0 = c/100 {\mu}m. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |z|/(1+z) = 0.16 (< |z| >= 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |z|/(1 + z) = 0.15 (< |z| >= 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z > 3 when compared to ~ 850 {\mu}m selected samples., Comment: 17 pages, 7 figures, accepted for publication in MNRAS
- Published
- 2012
- Full Text
- View/download PDF
7. Discovery of a Multiply Lensed Submillimeter Galaxy in Early HerMES Herschel/SPIRE Data
- Author
-
Conley, A., Cooray, A., Vieira, J. D., Blain, A., Bock, J. J., Bradford, C. M., Bridge, C., Carpenter, J. M., Djorgovski, S. G., Dowell, C. D., Fu, H., Levenson, L., Mahabal, A., Murphy, E., Nguyen, H. T., Riechers, D., Schulz, B., Shupe, D. L., Viero, M. P., Xu, C. K., Zemcov, M., and Zmuidzinas, J.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We report the discovery of a bright (f(250 μm)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 μm Submillimeter Array observations resolve at least four images with a large separation of ~9". A high-resolution adaptive optics K_p image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of μ ~ 11 ± 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 ± 3 K. We derive a lensing-corrected total IR luminosity of (1.43 ± 0.09) × 10^(13) L_☉, implying a star formation rate of ~2500 M_☉ yr^(–1). However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected.
- Published
- 2011
8. Modeling of the HERMES J105751.1+573027 submillimeter source lensed by a dark matter dominated foreground group of galaxies
- Author
-
Gavazzi, R., Cooray, A., Conley, A., Aguirre, J. E., Amblard, A., Auld, R., Beelen, A., Blain, A., Blundell, R., Bock, J., Bradford, C. M., Bridge, C., Brisbin, D., Burgarella, D., Chanial, P., Chapin, E., Christopher, N., Clements, D. L., Cox, P., Djorgovski, S. G., Dowell, C. D., Eales, S., Earle, L., Ellsworth-Bowers, T. P., Farrah, D., Franceschini, A., Fu, H., Glenn, J., Solares, E. A. González, Griffin, M., Gurwell, M. A., Halpern, M., Ibar, E., Ivison, R. J., Jarvis, M., Kamenetzky, J., Kim, S., Krips, M., Levenson, L., Lupu, R., Mahabal, A., Maloney, P. D., Maraston, C., Marchetti, L., Marsden, G., Matsuhara, H., Mortier, A. M. J., Murphy, E., Naylor, B. J., Neri, R., Nguyen, H. T., Oliver, S. J., Omont, A., Page, M. J., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rangwala, N., Rawlings, J. I., Raymond, G., Riechers, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Schulz, B., Scott, Douglas, Scott, K. S., Serra, P., Seymour, N., Shupe, D. L., Smith, A. J., Symeonidis, M., Tugwell, K. E., Vaccari, M., Valiante, E., Valtchanov, I., Verma, A., Vieira, J. D., Vigroux, L., Wang, L., Wardlow, J., Wiebe, D., Wright, G., Xu, C. K., Zeimann, G., Zemcov, M., and Zmuidzinas, J.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the results of a gravitational lensing analysis of the bright $\zs=2.957$ sub-millimeter galaxy (SMG), HERMES J105751.1+573027 found in {\it Herschel}/SPIRE Science Demonstration Phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high resolution imaging available in optical and Near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allow us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be $\mu=10.9\pm 0.7$. We measure the half-light radius $R_{\rm eff}$ of the source in the rest-frame Near-UV and $V$ bands that characterize the unobscured light coming from stars and find $R_{\rm eff,*}= [2.0 \pm 0.1]$ kpc, in good agreement with recent studies on the Submillimeter Galaxy population. This lens model is also used to estimate the size of the gas distribution ($R_{\rm eff,gas}= [1.1\pm0.5]$) kpc by mapping back in the source plane the CO (J=5-4) transition line emission. The lens modeling yields a relatively large Einstein radius $R_{\rm Ein}= 4\farcs10 \pm 0\farcs02$, corresponding to a deflector velocity dispersion of [$483\pm 16] \,\kms$. This shows that HERMES J105751.1+573027 is lensed by a {\it galaxy group-size} dark matter halo at redshift $\zl\sim 0.6$. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with $f_{\rm dm}(, Comment: Submitted to ApJ
- Published
- 2011
- Full Text
- View/download PDF
9. Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey
- Author
-
ROWAN ROBINSON, M, Roseboom, I. G., Vaccari, M, Amblard, A, Arumugam, V, Auld, R, Aussel, H, Babbedge, T, Blain, A, Bock, J, Boselli, A, Brisbin, D, Buat, V, Burgarella, D, CASTRO RODRIGUEZ, N, Cava, A, Chanial, P, Clements, D. L., Conley, A, Conversi, L, Cooray, A, Dowell, C. D., Dwek, E, Dye, S, Eales, S, Elbaz, D, Farrah, D, Fox, M, Franceschini, Alberto, Gear, W, Glenn, J, Gonzãlez, SOLARES E. A., Griffin, M, Halpern, M, Hatziminaoglou, E, Huang, J, Ibar, E, Isaak, K, Ivison, R. J., Lagache, G, Levenson, L, Lu, N, Madden, S, Maffei, B, Mainetti, Gabriele, Marchetti, L, Mortier, A. M. J., Nguyen, H. T., O'Halloran, B, Oliver, S. J., Omont, A, Page, M. J., Panuzzo, P, Papageorgiou, A, Patel, H, Pearson, C. P., Perez, FOURNON I., Pohlen, M, Rawlings, J. I., Raymond, G, Rigopoulou, D, Rizzo, D, Schulz, B, Scott, Douglas, Seymour, N, Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M, Trichas, M, Tugwell, K. E., Valtchanov, I, Vigroux, L, Wang, L, Ward, R, Wright, G, C. K., Xu, and Zemcov, M.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,galaxies: evolution, galaxies: starburst, galaxies: star formation, cosmology: observations, infrared: galaxies ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies ( 56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent ('cirrus') models with colder (10-20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses. © 2010 The Authors. Journal compilation © 2010 RAS.
- Published
- 2010
10. HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations
- Author
-
Glenn, J., Blain, A., Bock, J., Cooray, A., Dowell, C. D., Levenson, L., Lu, N., Nguyen, H. T., Schulz, B., Shupe, D. L., Vieira, J. D., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 μm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam.
- Published
- 2010
11. HerMES: SPIRE Science Demonstration Phase maps
- Author
-
Levenson, L., Zemcov, M., Blain, A., Bock, J., Cooray, A., Dowell, C. D., Nguyen, H. T., Schulz, B., Shupe, D. L., Vieira, J. D., and Xu, C. K.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We describe the production and verification of sky maps of the five Spectral and Photometric Imaging Receiver (SPIRE) fields observed as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) during the Science Demonstration Phase (SDP) of the Herschel mission. We have implemented an iterative map-making algorithm [The SPIRE-HerMES Iterative Mapper (SHIM)] to produce high fidelity maps that preserve extended diffuse emission on the sky while exploiting the repeated observations of the same region of the sky with many detectors in multiple scan directions to minimize residual instrument noise. We specify here the SHIM algorithm and outline the various tests that were performed to determine and characterize the quality of the maps and verify that the astrometry, point source flux and power on all relevant angular scales meet the needs of the HerMES science goals. These include multiple jackknife tests, determination of the map transfer function and detailed examination of the power spectra of both sky and jackknife maps. The map transfer function is approximately unity on scales from 1 arcmin to 1°. Final maps (v1.0), including multiple jackknives, as well as the SHIM pipeline, have been used by the HerMES team for the production of SDP papers.
- Published
- 2010
12. The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift
- Author
-
Brisbin, D., Harwit, M., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Castro-Rodriguez, N., Cava, A., Chanial, P., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dwek, E., Eales, S., Elbaz, D., Fox, M., Franceschini, A., Gear, W., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Lagache, Guilaine, Levenson, L., Lonsdale, Carol J., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Morrison, G. E., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Owen, F. N., Pannella, M., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Pohlen, M., Rizzo, D., Roseboom, I. G., Rowan-Robinson, M., Sanchez Portal, M., Schulz, B., Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Strazzullo, V., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vigroux, L., Wang, L., Ward, R., Wright, Gavin, Xu, C. K., Zemcov, M., Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Brisbin, D, Harwit, M, Altieri, B, Amblard, A, Arumugam, V, Aussel, H, Babbedge, T, Blain, A, Bock, J, Boselli, A, Buat, V, Castro-Rodriguez, N, Cava, A, Chanial, P, Clements, Dl, Conley, A, Conversi, L, Cooray, A, Dowell, Cd, Dwek, E, Eales, S, Elbaz, D, Fox, M, Franceschini, A, Gear, W, Glenn, J, Griffin, M, Halpern, M, Hatziminaoglou, E, Ibar, E, Isaak, K, Ivison, Rj, Lagache, G, Levenson, L, Lonsdale, Cj, Lu, N, Madden, S, Maffei, B, Mainetti, G, Marchetti, L, Morrison, Ge, Nguyen, Ht, O'Halloran, B, Oliver, Sj, Omont, A, Owen, Fn, Pannella, M, Panuzzo, P, Papageorgiou, A, Pearson, Cp, Perez-Fournon, I, Pohlen, M, Rizzo, D, Roseboom, Ig, Rowan-Robinson, M, Portal, M, Schulz, B, Seymour, N, Shupe, Dl, Smith, Aj, Stevens, Ja, Strazzullo, V, Symeonidis, M, Trichas, M, Tugwell, Ke, Vaccari, M, Valtchanov, I, Vigroux, L, Wang, L, Ward, R, Wright, G, Xu, Ck, and Zemcov, M
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Spectral and Photometric Imaging Receiver (SPIRE) on Herschel has been carrying out deep extragalactic surveys, one of whose aims is to establish spectral energy distributions (SED)s of individual galaxies spanning the infrared/submillimeter (IR/SMM) wavelength region. We report observations of the (IR/SMM) emission from the Lockman North field (LN) and Great Observatories Origins Deep Survey field North (GOODS-N). Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighboring galaxies, we present sets of galaxies in each field especially free of blending at 250, 350, and 500 microns. We identify the cumulative emission of these galaxies and the fraction of the far infrared cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z ~< 3 and a novel relationship between infrared and visible emission that shows a dependence on luminosity and redshift., 9 pages, 3 large tables, 2 tables in text, 5 figures Accepted for publication in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
13. Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey
- Author
-
Rowan-Robinson, M., Blain, A., Bock, J. J., Cooray, A., Dowell, C. D., Levenson, L., Lu, N. Y., Nguyen, H. T., Schulz, B., Shupe, D. L., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (~56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent (‘cirrus’) models with colder (10–20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5–24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5–70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses.
- Published
- 2010
14. HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations
- Author
-
Glenn, J., Conley, A., Béthermin, M., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Castro-Rodríguez, N., Cava, A., Chanial, P., Clements, D. L., Conversi, L., Cooray, A., Dowell, C. D., Dwek, E., Eales, S., Elbaz, D., Ellsworth-Bowers, T. P., Fox, M., Franceschini, A., Gear, W., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Lagache, G., Laurent, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Marsden, G., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rigopoulou, D., Rizzo, D., Roseboom, I. G., Rowan-Robinson, M., Portal, M. Sánchez, Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Vigroux, L., Wang, L., Ward, R., Wright, G., Xu, C. K., Zemcov, M., Observatoire Astronomique de Marseille Provence (OAMP), Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,[SDU]Sciences of the Universe [physics] ,cosmology: observations ,submillimetre: diffuse background ,FOS: Physical sciences ,cosmology: observations, submillimetre: diffuse background, submillimetre: galaxies ,Astrophysics::Cosmology and Extragalactic Astrophysics ,submillimetre: galaxies ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Dusty, star forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-SPIRE images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyze three fields from the HerMES programme in all three SPIRE bands (250, 350, and 500 microns); parameterized galaxy number count models are derived to a depth of ~2 mJy/beam, approximately 4 times the depth of previous analyses at these wavelengths, using a P(D) (probability of deflection) approach for comparison to theoretical number count models. Our fits account for 64, 60, and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number counts models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam., Comment: Accepted for publication in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
15. In-flight calibration of the Herschel-SPIRE instrument
- Author
-
Swinyard, B. M., Levenson, L., Lu, N., Schulz, B., Schwartz, A., Shupe, D., Xu, C. K., and Zhang, L.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
- Published
- 2010
16. [Letter to the Editor] HerMES: SPIRE galaxy number counts at 250, 350, and 500 μm
- Author
-
Oliver, S, Wang, L, Smith, A J, Altieri, B, Amblard, A, Arumugam, V, Auld, R, Aussel, H, Babbedge, T, Blain, A, Bock, J, Boselli, A, Buat, V, Burgarella, D, Castro-Rodríguez, N, Cava, A, Chanial, P, Clements, D L, Conley, A, Conversi, L, Cooray, A, Dowell, C D, Dwek, E, Eales, S, Elbaz, D, Fox, M, Franceschini, A, Gear, W, Glenn, J, Griffin, M, Halpern, M, Hatziminaoglou, E, Ibar, E, Isaak, K, Ivison, R J, Lagache, G, Levenson, L, Lu, N, Madden, S, Maffei, B, Mainetti, G, Marchetti, L, Mitchell-Wynne, K, Mortier, A M J, Nguyen, H T, O'Halloran, B, Omont, A, Page, M J, Panuzzo, P, Papageorgiou, A, Pearson, C P, Pérez-Fournon, I, Pohlen, M, Rawlings, J I, Raymond, G, Rigopoulou, D, Rizzo, D, Roseboom, I, Rowan-Robinson, M, Sánchez Portal, M, Savage, R S, Schulz, B, Scott, D, Seymour-Smith, N, Shupe, D L, Stevens, J A, Symeonidis, M, Trichas, M, Tugwell, K E, Vaccari, M, Valiante, E, Valtchanov, I, Vieira, J D, Vigroux, L, Ward, R, Wright, G, Xu, C K, and Zemcov, M
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QB - Abstract
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy\ud population evolution and to test pre-existing models of galaxies.With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ∼20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts
- Published
- 2010
17. Evolution of dust temperature of galaxies through cosmic time as seen by Herschel
- Author
-
Cava, A., Cepa, J., Chanial, P., Chapin, E., Chary, R. -R., Cimatti, Alessandro, Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dannerbauer, H., Dickinson, M., Dominguez, H., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, S., Farrah, D., Schreiber, N. Foerster, Fox, M., Franceschini, A., Gear, W., Genzel, R., Glenn, J., Griffin, M., Gruppioni, C., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Jeong, W. -S., Lagache, Guilaine, Le Borgne, Damien, Le Floc'H, E., Lee, H. M., Lee, J. C., Lee, M. G., Levenson, L., Lu, N., Lutz, D., Madden, S., Maffei, B., Magnelli, B., Mainetti, G., Maiolino, R., Marchetti, L., Mortier, A. M. J., Nguyen, H. T., Nordon, R., O'Halloran, B., Okumura, K., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Perez Garcia, A. M., Poglitsch, A., Pohlen, M., Popesso, P., Pozzi, F., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Saintonge, A., Sanchez Portal, M., Santini, P., Sauvage, M., Schulz, B., Scott, D., Seymour, N., Shao, L., Shupe, D. L., Smith, A. J., Stevens, J. A., Sturm, E., Tacconi, L., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Vigroux, L., Wang, L., Ward, R., Wright, Gavin, Xu, C. K., Zemcov, M., Hwang, H. S., Elbaz, D., Magdis, G., Daddi, Emanuele, Symeonidis, M., Altieri, B., Amblard, A., Andreani, P., Arumugam, V., Auld, R., Aussel, H., Babbedge, T., Berta, S., Blain, A., Bock, J., Bongiovanni, A., Boselli, A., Buat, V., Burgarella, D., Castro-Rodriguez, N., H.S. Hwang, D. Elbaz, G. E. Magdi, E. Daddi, M. Symeonidi, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, E. Chapin, R.-R. Chary, A. Cimatti, D.L. Clement, A. Conley, L. Conversi, A. Cooray, H. Dannerbauer, M. Dickinson, H. Dominguez, C.D. Dowell, J.S. Dunlop, E. Dwek, S. Eale, D. Farrah, N. Forster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R.J. Ivison, W.-S. Jeong, G. Lagache, D. Le Borgne, E. Le Floc'h, H.M. Lee, J.C. Lee, M.G. Lee, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, B. Magnelli, G. Mainetti, R. Maiolino, L. Marchetti, A.M.J. Mortier, H.T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S.J. Oliver, A. Omont, M.J. Page, P. Panuzzo, A. Papageorgiou, C.P. Pearson, I. Perez-Fournon, A.M. Perez Garcia, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J.I. Rawling, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I.G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, Douglas Scott, N. Seymour, L. Shao, D.L. Shupe, A.J. Smith, J.A. Steven, E. Sturm, L. Tacconi, M. Tricha, K.E. Tugwell, M. Vaccari, I. Valtchanov, J.D. Vieira, L. Vigroux, L.Wang, R. Ward, G. Wright, C.K. Xu, M. Zemcov, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the dust properties of galaxies in the redshift range 0.10.5 with L_IR>5x10^{10} L_\odot, appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities; and the dispersion in T_dust for high-z galaxies increases with L_IR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the L_IR-T_dust relation can bridge the gap between local star-forming galaxies and high-z submillimeter galaxies (SMGs). We also find that three SMGs with very low T_dust (, Comment: 9 pages, 6 figures, To appear in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
18. In-flight calibration of the Herschel-SPIRE instrument [Letter]
- Author
-
Swinyard, B. M., Ade, Peter A. R., Baluteau, J.-P., Aussel, H., Barlow, M. J., Bendo, G. J., Benielli, D., Bock, J., Brisbin, D., Conley, A., Conversi, L., Dowell, A., Dowell, D., Ferlet, M., Fulton, T., Glenn, J., Glauser, A., Griffin, D., Griffin, Matthew Joseph, Guest, S., Imhof, P., Isaak, Kate Gudrun, Jones, S., King, K., Leeks, S., Levenson, L., Lim, T. L., Lu, N., Makiwa, G., Naylor, D., Nguyen, H., Oliver, S., Panuzzo, P., Papageorgiou, Andreas, Pearson, C., Pohlen, Michael, Polehampton, E., Pouliquen, D., Rigopoulou, D., Ronayette, S., Roussel, H., Rykala, Adam John, Savini, G., Schulz, B., Schwartz, A., Shupe, D., Sibthorpe, B., Sidher, S., Smith, A. J., Spencer, Locke, Trichas, M., Triou, H., Valtchanov, I., Wesson, R., Woodcraft, A., Xu, C. K., Zemcov, M., and Zhang, L.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QB - Abstract
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
- Published
- 2010
19. Herschel unveils a puzzling uniformity of distant dusty galaxies [Letter]
- Author
-
Elbaz, D., Hwang, H. S., Magnelli, B., Daddi, E., Aussel, H., Altieri, B., Amblard, A., Andreani, P., Arumugam, V., Auld, Robbie Richard, Babbedge, T., Berta, S., Blain, A., Bock, J., Bongiovanni, A., Boselli, A., Buat, V., Burgarella, D., Castro-Rodriguez, N., Cava, A., Cepa, J., Chanial, P., Chary, R.-R., Cimatti, A., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dickinson, M., Dominguez, H., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, Stephen Anthony, Farrah, D., Förster Schreiber, N., Fox, M., Franceschini, A., Gear, Walter Kieran, Genzel, R., Glenn, J., Griffin, Matthew Joseph, Gruppioni, C., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, Kate Gudrun, Ivison, R. J., Lagache, G., Le Borgne, D., Le Floc'h, E., Levenson, L., Lu, N., Lutz, D., Madden, S., Maffei, B., Magdis, G., Mainetti, G., Maiolino, R., Marchetti, L., Mortier, A. M. J., Nguyen, H. T., Nordon, R., O'Halloran, B., Okumura, K., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, Andreas, Pearson, C. P., Perez Fournon, I., Pérez García, A. M., Poglitsch, A., Pohlen, Michael, Popesso, P., Pozzi, F., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Saintonge, A., Sanchez Portal, M., Santini, P., Sauvage, M., Schulz, B., Scott, D., Seymour, N., Shao, L., Shupe, D. L., Smith, A. J., Stevens, J. A., Sturm, E., Symeonidis, M., Tacconi, L., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J., Vigroux, L., Wang, L., Ward, R., Wright, G., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QB - Abstract
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of star-formation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 μm to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 μm prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e.g. at 24 μm, to identify “isolated” galaxies whose flux is not boosted by bright neighbors. Below z ~ 1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to z ~ 0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, LIR ≥ 1012 ). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 μm, 250 μm or 350 μm bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ~150 μm (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, LIR ≥ 1011 ) around z ~ 1 is mildly colder by 10–15% than their local analogs and up to 20% for ULIRGs at z ~ 1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of β = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies.
- Published
- 2010
20. Specific star-formation and the relation to stellar mass from 0
- Author
-
Oliver, Seb, Frost, M., Farrah, D., Gonzalez-Solares, E., Shupe, D. L., Henriques, B., Roseboom, I., Luis, A. Afonso, Babbedge, T. S. R., Frayer, D., Lencz, C., Lonsdale, C. J., Masci, F., Padgett, D., Polletta, M., Rowan-Robinson, M., Siana, B., Smith, H. E., Surace, J. A., and Vaccari, M.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We use the Spitzer Wide-area InfraRed Extragalactic Legacy Survey (SWIRE) to explore the specific star-formation activity of galaxies and their evolution near the peak of the cosmic far-infrared (FIR) background at 70 and 160um. We use a stacking analysis to determine the mean FIR properties of well defined subsets of galaxies at flux levels well below the FIR catalogue detection limits of SWIRE and other Spitzer surveys. We tabulate the contribution of different subsets of galaxies to the FIR background at 70um and 160um. These long wavelengths provide a good constraint on the bolometric, obscured emission. The large area provides good constraints at low z and in finer redshift bins than previous work. At all redshifts we find that the specific FIR Luminosity (sLFIR) decreases with increasing mass, following a trend L_FIR/M* propto M_* ^beta with beta =-0.38\pm0.14. This is a more continuous change than expected from the {Delucia2007} semi-analytic model suggesting modifications to the feedback prescriptions. We see an increase in the sLFIR by about a factor of ~100 from 0, v2 Update doesn't change the content of the paper, but now includes data files for the plots Fig 5-13 (all.plotdat, spi.plotdat and ell.plotdat on arXiv package)
- Published
- 2010
- Full Text
- View/download PDF
21. The HerMES SPIRE submillimeter local luminosity function [Letter]
- Author
-
Vaccari, M., Marchetti, L., Franceschini, A., Altieri, B., Amblard, A., Arumugam, V., Auld, Robbie Richard, Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Burgarella, D., Castro-Rodríguez, N., Cava, A., Chanial, P., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dwek, E., Dye, S., Eales, Stephen Anthony, Elbaz, D., Farrah, D., Fox, M., Gear, Walter Kieran, Glenn, J., González Solares, E. A., Griffin, Matthew Joseph, Halpern, M., Hatziminaoglou, E., Huang, J., Ibar, E., Isaak, Kate Gudrun, Ivison, R. J., Lagache, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Mortier, A. M. J., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, Andreas, Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rawlings, J. I., Raymond, Gwenifer, Rigopoulou, D., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Sánchez Portal, M., Schulz, B., Scott, D., Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Valiante, Elisabetta, Valtchanov, I., Vigroux, L., Wang, L., Ward, R., Wright, G., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QC ,QB - Abstract
Local luminosity functions are fundamental benchmarks for high-redshift galaxy formation and evolution studies as well as for models describing\ud these processes. Determining the local luminosity function in the submillimeter range can help to better constrain in particular the bolometric\ud luminosity density in the local Universe, and Herschel offers the first opportunity to do so in an unbiased way by imaging large sky areas at\ud several submillimeter wavelengths. We present the first Herschel measurement of the submillimeter 0 < z < 0.2 local luminosity function\ud and infrared bolometric (8−1000 μm) local luminosity density based on SPIRE data from the HerMES Herschel key program over 14.7 deg2.\ud Flux measurements in the three SPIRE channels at 250, 350 and 500 μm are combined with Spitzer photometry and archival data. We fit the\ud observed optical-to-submillimeter spectral energy distribution of SPIRE sources and use the 1/Vmax estimator to provide the first constraints on\ud the monochromatic 250, 350 and 500 μm as well as on the infrared bolometric (8−1000 μm) local luminosity function based on Herschel data.\ud We compare our results with modeling predictions and find a slightly more abundant local submillimeter population than predicted by a number\ud of models. Our measurement of the infrared bolometric (8−1000 μm) local luminosity function suggests a flat slope at low luminosity, and the\ud inferred local luminosity density, 1.31+0.24\ud −0.21\ud × 108 L� Mpc−3, is consistent with the range of values reported in recent literature.
- Published
- 2010
22. Properties of dusty tori in AGN: I. The Case of SWIRE/SDSS Quasars
- Author
-
Hatziminaoglou, E., Fritz, J., Franceschini, A., Afonso-Luis, A., Hernan-Caballero, A., Perez-Fournon, I., Serjeant, S., Lonsdale, C., Oliver, S., Rowan-Robinson, M., Shupe, D., Smith, H. E., and Surace, J.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We derive the properties of dusty tori in Active Galactic Nuclei (AGN) from the comparison of observed Spectral Energy Distributions (SEDs) of SDSS quasars and a precomputed grid of torus models. The observed SEDs comprise SDSS photometry, 2MASS J, H, and K data, whenever available and mid-Infrared (MIR) data from the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. The adopted model is that of Fritz et al., 2006. The fit is performed by standard chi^2 minimisation, the model however can be multi-component comprising a stellar and a starburst components, whenever necessary. Models with low equatorial optical depth, tau_9.7, were allowed as well as ``traditional'' models with tau_9.7 > 1.0, corresponding to A_V > 22 and the results were compared. Fits using high optical depth tori models only produced dust more compactly distributed than in the configuration where all tau_9.7 models were permitted. Tori with decreasing dust density with the distance from the centre were favoured while there was no clear preference for models with or without angular variation of the dust density. The computed outer radii of the tori are of some tens of parsecs large but can reach, in a few cases, a few hundreds of parsecs. The mass of dust, M_Dust, and infrared luminosity, L_IR, integrated in the wavelength range between 1 and 1000 micron, do not show significant variations with redshift, once the observational biases are taken into account. Objects with 70 micron detections, representing 25% of the sample, are studied separately and the starburst contribution (whenever present) to the IR luminosity can reach, in the most extreme but very few cases, 80%., Full length tables 1 & 2 were omitted from the on-line issue, they can be directly retrieved from the CDS ftp site: http://cdsarc.u-strasbg.fr/viz-bin/ftp-index?J/MNRAS/386/1252
- Published
- 2008
- Full Text
- View/download PDF
23. Distant ULIRGs in the SWIRE Survey
- Author
-
Lonsdale, Carol J., Polletta, M., Farrah, D., Siana, B., Gonzalez-Solares, E., Smith, H. E., Shupe, D., Surace, J., Fang, F., Afonso-Luis, A., Berta, S., and Rowan-Robinson, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Covering ~49 square degrees in 6 separate fields, the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Legacy survey has the largest area among Spitzer’s “wedding cake” suite of extragalactic surveys. SWIRE is thus optimized for studies of large scale structure, population studies requiring excellent statistics, and searches for rare objects. We discuss the search for high redshift ultraluminous infrared galaxies (ULIRGs) with SWIRE. We have selected complete samples of F_(24μm) > 200 μJy, optically faint, candidate high redshift (z>1) ULIRGs, based on their mid-infrared spectral energy distributions (SEDs). These can be broadly categorized as star formation (SF)-dominated, based on the presence of a clear stellar peak at rest frame 1.6μm redshifted into the IRAC bands, or AGN-dominated if the SED rises featureless into the mid-infrared. AGN-dominated galaxies strongly dominate at the brightest 24μm fluxes, while SF-dominated objects rise rapidly in frequency as F_(24) drops, dominating the sample below 0.5 mJy. We derive photometric redshifts and luminosities for SFdominated objects sampling the z~1.2-3 range. Luminosity functions are being derived and compared with submm-selected samples at similar redshifts. The clustering, millimeter and IR spectral properties of the samples have also been investigated.
- Published
- 2008
24. UV to IR SEDs of UV-Selected Galaxies in the ELAIS Fields: Evolution of Dust Attenuation and Star Formation Activity from z = 0.7 to 0.2
- Author
-
Iglesias-Páramo, J., Buat, V., Hernández-Fernández, J., Xu, C. K., Burgarella, D., Takeuchi, T. T., Boselli, A., Shupe, D., Rowan-Robinson, M., Babbedge, T., Conrow, T., Fang, F., Farrah, D., González-Solares, E., Lonsdale, C., Smith, G., Surace, J., Barlow, T. A., Forster, K., Friedman, P. G., Martin, D. C., Morrissey, P., Neff, S. G., Schiminovich, D., Seibert, M., Small, T., Wyder, T. K., Bianchi, L., Donas, J., Heckman, T. M., Lee, Y.-W., Madore, B. F., Milliard, B., Rich, R. M., Szalay, A. S., Welsh, B. Y., and Yi, S. K.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate-redshift (0.2 ≤ z ≤ 0.7) UV-selected galaxies from the ELAIS N1 and ELAIS N2 fields by fitting a multi-wavelength data set to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition, the dust attenuation of low-mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M_* ≥ 10^(11) M_⊙. This result is consistent with a mass-dependent evolution of the dust-to-gas ratio, which could be driven by a mass-dependent efficiency of star formation in star-forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M^*-SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples, which for a UV-selected sample, favors blue, star-forming galaxies.
- Published
- 2007
25. Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey
- Author
-
Polletta, M., Tajer, M., Maraschi, L., Trinchieri, G., Lonsdale, C. J., Chiappetti, L., Andreon, S., Pierre, M., Fevre, O. Le, Zamorani, G., Maccagni, D., Garcet, O., Surdej, J., Franceschini, A., Alloin, D., Shupe, D. L., Surace, J. A., Fang, F., Rowan-Robinson, M., Smith, H. E., and Tresse, L.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present the spectral energy distributions (SEDs) of a hard X-ray selected sample. The sample contains 136 sources with F(2-10 keV)>10^-14 erg/cm^2/s and 132 are AGNs. The sources are detected in a 1 square degree area of the XMM-Newton-Medium Deep Survey where optical data from the VVDS, CFHTLS surveys, and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with sigma(1+z)=0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17+9-6% of AGNs shows star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33+6-1%) and AGN2 (50+6-11). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the IR SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L(3-20micron)/Lcorr(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E>10 keV are too faint to be detected even in the deepest current radio surveys., Accepted for publication in ApJ
- Published
- 2007
26. VVDS-SWIRE: Clustering evolution from a spectroscopic sample of galaxies with redshift 0.2<z<2.1 selected from Spitzer IRAC 3.6 micron and 4.5 micron photometry
- Author
-
de la Torre, S., Fevre, O. Le, Arnouts, S., Guzzo, L., Farrah, D., Iovino, A., Lonsdale, C. J., Meneux, B., Oliver, S. J., Pollo, A., Waddington, I., Bottini, D., Fang, F., Garilli, B., Brun, V. Le, Maccagni, D., Picat, J. P., Scaramella, R., Scodeggio, M., Shupe, D., Surace, J., Tresse, L., Vettolani, G., Zanichelli, A., Adami, C., Bardelli, S., Bolzonella, M., Cappi, A., Charlot, S., Ciliegi, P., Contini, T., Foucaud, S., Franzetti, P., Gavignaud, I., Ilbert, O., Lamareille, F., McCracken, H. J., Marano, B., Marinoni, C., Mazure, A., Merighi, R., Paltani, S., Pello, R., Pozzetti, L., Radovich, M., Zamorani, G., Zucca, E., Bondi, M., Bongiorno, A., Brinchmann, J., Cucciati, O., Mellier, Y., Merluzzi, P., Temporin, S., Vergani, D., and Walcher, C. J.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
By combining the VVDS with the SWIRE data, we have built the currently largest spectroscopic sample of galaxies selected in the rest-frame near-infrared. These allow us to investigate, for the first time using spectroscopic redshifts, the clustering evolution of galaxies selected from their rest-frame near-infrared luminosity in the redshift range 0.2, Comment: 11 pages, 8 figures. Accepted for publication in A&A
- Published
- 2007
27. VVDS-SWIRE: Clustering evolution from a spectroscopic sample of galaxies with redshift 0.2
- Author
-
de la Torre, S., Fevre, O. Le, Arnouts, S., Guzzo, L., Farrah, D., Iovino, A., Lonsdale, C. J., Meneux, B., Oliver, S. J., Pollo, A., Waddington, I., Bottini, D., Fang, F., Garilli, B., Brun, V. Le, Maccagni, D., Picat, J. P., Scaramella, R., Scodeggio, M., Shupe, D., Surace, J., Tresse, L., Vettolani, G., Zanichelli, A., Adami, C., Bardelli, S., Bolzonella, M., Cappi, A., Charlot, S., Ciliegi, P., Contini, T., Foucaud, S., Franzetti, P., Gavignaud, I., Ilbert, O., Lamareille, F., McCracken, H. J., Marano, B., Marinoni, C., Mazure, A., Merighi, R., Paltani, S., Pello, R., Pozzetti, L., Radovich, M., Zamorani, G., Zucca, E., Bondi, M., Bongiorno, A., Brinchmann, J., Cucciati, O., Mellier, Y., Merluzzi, P., Temporin, S., Vergani, D., and Walcher, C. J.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
By combining the VVDS with the SWIRE data, we have built the currently largest spectroscopic sample of galaxies selected in the rest-frame near-infrared. These allow us to investigate, for the first time using spectroscopic redshifts, the clustering evolution of galaxies selected from their rest-frame near-infrared luminosity in the redshift range 0.2, 11 pages, 8 figures. Accepted for publication in A&A
- Published
- 2007
- Full Text
- View/download PDF
28. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton Medium Deep Survey
- Author
-
Polletta, M., Tajer, M., Maraschi, L., Trinchieri, G., Lonsdale, C. J., Chiappetti, L., Andreon, S., Pierre, M., Le Fèvre, O., Zamorani, G., Maccagni, D., Garcet, O., Surdej, J., Franceschini, A., Alloin, D., Shupe, D. L., Surace, J. A., Fang, F., Rowan-Robinson, M., Smith, H. E., and Tresse, L.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present the SEDs of a hard X-ray selected sample containing 136 sources with F_(2-10 keV) > 10^(-14) erg cm^(-2) s^(-1); 132 are AGNs. The sources are detected in a 1 deg^2 area of the XMM-Newton Medium Deep Survey where optical data from the VVDS and CFHTLS and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with σ(1 + z) = 0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17^(+9)_(-6)% of AGNs show star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33^(+6)_(-1)%) and AGN2 (50^(+6)_(-11)%). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the infrared SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L_(3-20 μm)/L^(corr)_(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E > 10 keV are too faint to be detected even in the deepest current radio surveys.
- Published
- 2007
29. Ultraluminous Infrared Galaxies at 1.5
- Author
-
Farrah, D., Lonsdale, C. J., Borys, C., Fang, F., Waddington, I., Oliver, S., Rowan-Robinson, M., Babbedge, T., Shupe, D., Polletta, M., Smith, H. E., and Surace, J.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present measurements of the spatial clustering of ultraluminous infrared galaxies in two redshift intervals, 1.51. Adopting plausible models for the growth of DM haloes with redshift, then the haloes hosting the 2, ASP conference series. To appear in the conference proceedings for "At the edge of the Universe", Sintra, Portugal, October 2006. Six pages, one figure
- Published
- 2007
- Full Text
- View/download PDF
30. Active Galactic Nucleus and Starburst Classification from Spitzer Mid-Infrared Spectra for High-Redshift SWIRE Sources
- Author
-
Weedman, D., Polletta, M., Lonsdale, C. J., Wilkes, B. J., Siana, B., Houck, J. R., Surace, J., Shupe, D., Farrah, D., and Smith, H. E.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs), which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra that show silicate absorption or are power laws; only one AGN source shows PAH emission features. All nine of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all nine starbursts (1.0 < z < 1.9) and 8 of the 11 AGNs (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts that are most luminous in the mid-infrared is less than that for the most luminous AGNs within the redshift interval 1.7 ≾ z ≾ 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGNs for f_ν(24 μm) ≳ 1.0 mJy.
- Published
- 2006
31. XMM-LSS discovery of a z = 1.22 galaxy cluster
- Author
-
Bremer, M. N., Valtchanov, I., Willis, J., Altieri, B., Andreon, S., Duc, P. A., Fang, F., Jean, C., Lonsdale, C., Pacaud, F., Pierre, M., Shupe, D. L., Surace, J. A., and Waddington, I.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Caltech Library Services - Abstract
We present details of the discovery of XLSS J022303.0−043622, a z= 1.2 cluster of galaxies. This cluster was identified from its X-ray properties and selected as a z > 1 candidate from its optical/near-infrared (IR) characteristics in the XMM Large-Scale Structure Survey (XMM-LSS). It is the most distant system discovered in the survey to date. We present ground-based optical and near-IR observations of the system carried out as part of the XMM-LSS survey. The cluster has a bolometric X-ray luminosity of 1.1 ± 0.7 × 10^44 erg s^−1 , fainter than most other known z > 1 X-ray selected clusters. In the optical it has a remarkably compact core, with at least a dozen galaxies inside a 125 kpc radius circle centred on the X-ray position. Most of the galaxies within the core, and those spectroscopically confirmed to be cluster members, have stellar masses similar to those of massive cluster galaxies at low redshift. They have colours comparable to those of galaxies in other z > 1 clusters, consistent with showing little sign of strong ongoing star formation. The bulk of the star formation within the galaxies appears to have ceased at least 1.5 Gyr before the observed epoch. Our results are consistent with massive cluster galaxies forming at z > 1 and passively evolving thereafter. We also show that the system is straightforwardly identified in Spitzer/IRAC 3.6- and 4.5-μm data obtained by the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey emphasizing the power and utility of joint XMM and Spitzer searches for the most distant clusters.
- Published
- 2006
32. AGN and Starburst Classification from Spitzer Mid-Infrared Spectra for High Redshift SWIRE Sources
- Author
-
Weedman, D., Polletta, M., Lonsdale, C. J., Wilkes, B. J., Siana, B., Houck, J. R., Surace, J., Shupe, D., Farrah, D., and Smith, H. E.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy., 34 pages, 11 figures, ApJ accepted (Dec 2006)
- Published
- 2006
- Full Text
- View/download PDF
33. Chandra and Spitzer unveil heavily obscured quasars in the SWIRE/Chandra Survey
- Author
-
Polletta, M., Wilkes, B. J., Siana, B., Lonsdale, C. J., Kilgard, R., Smith, H. E., Kim, D. -W., Owen, F., Efstathiou, A., Jarrett, T., Stacey, G., Franceschini, A., Rowan-Robinson, M., Babbedge, T. S. R., Berta, S., Fang, F., Farrah, D., Gonzalez-Solares, E., Morrison, G., Surace, J. A., and Shupe, D. L.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses., ApJ accepted (to appear in May 2006 issue, vol. 642, of ApJ) Figures 2, 3, and 14 have been degraded due to space considerations
- Published
- 2006
- Full Text
- View/download PDF
34. Morphological Studies of the SWIRE Galaxy Population in the UGC 10214 HST/ACS field
- Author
-
Hatziminaoglou, E., Cassata, P., Rodighiero, G., Perez-Fournon, I., Franceschini, A., Hernan-Caballero, A., Francisco Miguel Montenegro Montes, Afonso-Luis, A., Jarrett, T., Stacey, G., Lonsdale, C., Fang, F., Oliver, S., Rowan-Robinson, M., Shupe, D., Smith, H. E., Surace, J., Xu, C. K., and Gonzalez-Solares, E. A.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present results of a morphological analysis of a small subset of the Spitzer Wide-area InfraRed Extragalactic survey (SWIRE) galaxy population. The analysis is based on public ACS data taken inside the SWIRE N1 field, which are the deepest optical high-resolution imaging available within the SWIRE fields as of today. Our reference sample includes 156 galaxies detected by both ACS and SWIRE. Among the various galaxy morphologies, we disentangle two main classes, spheroids (or bulge-dominated galaxies) and disk-dominated ones, for which we compute the number counts as a function of flux. We then limit our sample to objects with IRAC fluxes brighter than 10 microJy, estimated ~90% completeness limit of the SWIRE catalogues, and compare the observed counts to model predictions. We find that the observed counts of the spheroidal population agree with the expectations of a hierarchical model while a monolithic scenario predicts steeper counts. Both scenaria, however, under-predict the number of late-type galaxies. These observations show that the large majority (close to 80 per cent) of the 3.6 and 4.5 micron galaxy population, even at these moderately faint fluxes, is dominated by spiral and irregular galaxies or mergers., 14 pages, 11 figures, accapted for publication in MNRAS
- Published
- 2005
35. Spectral energy distributions and luminosities of galaxies and AGN in the SPITZER SWIRE Legacy Survey
- Author
-
Rowan-Robinson, M., Babbedge, T., Surace, J., Shupe, D., Fang, F., Lonsdale, C., Smith, E. E., Polletta, M., Siana, B., Gonzalez-Solares, E., Xu, C., Owen, F., Davoodi, P., Dole, H., Dominghue, D., Efstathiou, A., Farrah, D., Fox, M., Franceschini, A., Frayer, D., Hatzimaoglou, E., Masci, F., Morrison, G., Nandra, K., Oliver, S., Onyett, N., Padgett, D., Perez-Fournon, I., Serjeant, S., Stacey, G., and Vaccari, M.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed., Comment: Accepted for publication by Astronomical Journal, 21 figures (5 in colour). Fig 3 available at http://astro.ic.ac.uk/~mrr/
- Published
- 2004
- Full Text
- View/download PDF
36. Models for Evolution of Dusty Galaxies and E/S0s Seen in Multiband Surveys
- Author
-
Xu, C. K., Lonsdale, C. J., Shupe, D. L., Franceschini, A., Martin, C., and Schiminovich, D.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Phenomenological models for evolution of dusty galaxies and E/S0 galaxies, respectively, are developed to address two major questions concenring galaxy populations in deep infrared (IR) surveys: (1) Do normal late-type galaxies or starburst galaxies (including galaxies with obscured AGNs) dominate among sources in deep IR surveys? (2) How much do E/S0 galaxies contribute to the counts in deep mid-infrared (MIR: 3 -- 20$\mu m$) surveys? Among three new models for evolution of dusty galaxies, it is assumed in Model S1 that starburst galaxies are the dominant population, and in Model S2 that normal galaxies dominate. Model S3 is an intermediate model. Comparing the model predictions with a wide range of observational data collected from the literature, we find that none of these models can be ruled out, given the uncertainties of the data. We show that the most direct method to distinguish these models is to compare the predicted color distributions of IR galaxies with observations, which will soon be available from the SWIRE survey. The models for E/S0 galaxies follow a simple passive evolution approach. Among the three E/S0 models (E1, E2 and E3) investigated in this paper, Model E2 which is specified by a peak formation redshift $z_{peak}=2$, and an e-folding formation time scale $\omega=2$ Gyr, fits the data best. This suggests a synchronization between the evolution of E/S0 galaxies and of starburst galaxies, in the sense that the peak of the formation function of E/S0s ($z_{peak}=2$) is close to the peak of the evolution functions of starburst galaxies ($z_{peak} = 1.4$). New predictions for counts and confusion limits in the SIRTF bands are presented., Comment: 48 pages text, 24 figures. Accepted by ApJ. A PS file including all figures can be found in http://spider.ipac.caltech.edu/staff/cxu/preprints/apj_paper2.ps.gz
- Published
- 2002
37. Pointing Refinement of SIRTF Images
- Author
-
Masci, F., Makovoz, D., Moshir, M., Shupe, D., and Fowler, John W.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The soon-to-be-launched Space Infrared Telescope Facility (SIRTF) shall produce image data with an a-posteriori pointing knowledge of 1.4 arcsec (1 sigma radial) with a goal of 1.2 arcsec in the International Celestial Reference System (ICRS). To perform robust image coaddition, mosaic generation, extraction and position determination of faint sources, the pointing will need to be refined to better than a few-tenths of an arcsecond. We use a linear-sparse matrix solver to find a "global-minimization" of all relative image offsets in a mosaic from which refined pointings and orientations can be computed. This paper summarizes the pointing-refinement algorithm and presents the results of testing on simulated data., Comment: 4 pages, 2 figures, To appear in Proceedings of Astronomical Data Analysis Software and Systems XII, Baltimore, 2002
- Published
- 2002
- Full Text
- View/download PDF
38. HerMES: SPIRE galaxy number counts at 250, 350, and 500 μ m
- Author
-
Oliver, S. J., Wang, L., Smith, A. J., Altieri, B., Amblard, A., Arumugam, V., Auld, R., Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Burgarella, D., Castro-Rodríguez, N., Cava, A., Chanial, P., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dwek, E., Eales, S., Elbaz, D., Fox, M., Franceschini, A., Gear, W., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Lagache, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Mitchell-Wynne, K., Mortier, A. M. J., Nguyen, H. T., O Halloran, B., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rawlings, J. I., Raymond, G., Rigopoulou, D., Rizzo, D., Roseboom, I. G., Rowan-Robinson, M., Sánchez Portal, M., Savage, R., Schulz, B., Scott, D., Seymour, N., Shupe, D. L., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Mattia Vaccari, Valiante, E., Valtchanov, I., Vieira, J. D., Vigroux, L., Ward, R., Wright, G., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts
39. Sloan Digital Sky Survey Quasars in the SWIRE ELAIS N1 Field: Properties and Spectral Energy Distributions
- Author
-
Hatziminaoglou, E., Perez-Fournon, I., Polletta, M., Afonso-Luis, A., Hernan-Caballero, A., Francisco Miguel Montenegro Montes, Lonsdale, C., Xu, C. K., Franceschini, A., Rowan-Robinson, M., Babbedge, T., Smith, H. E., Surace, J., Shupe, D., Fang, F., Farrah, D., Oliver, S., Gonzalez-Solares, E. A., and Serjeant, S.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present a mid-infrared analysis of 35 quasars with spectroscopic redshifts selected from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE). We discuss their optical and mid-infrared (MIR) colors, and show that these quasars occupy well defined regions in MIR color-color space. We examine the issue of type-I AGN candidate selection in detail and propose new selection methods based on mid-IR colors. The available multi-band data allows us to construct two new, well-sampled quasar templates, covering wavelengths from the ultraviolet to the MIR., 23 pages, 19 figures, accepted for publication in AJ
40. The contribution of AGNs and star-forming galaxies to the mid-infrared as revealed by their spectral energy distributions
- Author
-
Lucia Pozzetti, C. Vignali, Jason Surace, Fan Fang, C. Lonsdale, N. Sacchi, David L. Shupe, I. Matute, G. Zamorani, Michael Rowan-Robinson, M. Polletta, F. La Franca, Andrea Comastri, Stefano Berta, Francesca Pozzi, Carlotta Gruppioni, Gruppioni C., Pozzi F., Polletta M., Zamorani G., La Franca F., Sacchi N., Comastri A., Pozzetti L., Vignali C., Lonsdale C., Rowan-Robinson M., Surace J., Shupe D., Fang F., Matute I., Berta S., Gruppioni, C, Pozzi, F, Polletta, M, Zamorani, G, LA FRANCA, Fabio, Sacchi, N, Comastri, A, Pozzetti, L, Vignali, C, Lonsdale, C, Rowan Robinson, M, Surace, J, Shupe, D, Fang, F, Matute, I, and Berta, S.
- Subjects
Luminous infrared galaxy ,Physics ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift survey ,Redshift ,Galaxy ,Luminosity ,Space and Planetary Science ,Galaxy formation and evolution ,Spectral energy distribution ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present the broad-band Spectral Energy Distributions (SEDs) of the largest available highly (72%) complete spectroscopic sample of mid-infrared (MIR) selected galaxies and AGN at intermediate redshift. The sample contains 203 extragalactic sources from the 15-micron survey in the ELAIS-SWIRE field S1, all with measured spectroscopic redshift. Most of these sources have full multi-wavelength coverage from the far-UV to the far-infrared and lie in the redshift range 0.110 mJy, while that obtained from optical spectroscopy never being >30%, even at the higher flux densities. The results of this work will be very useful for updating all the models aimed at interpreting the deep infrared survey data and, in particular, for constraining the nature and the role of dust-obscured systems in the intermediate/high-redshift Universe., Comment: Accepted for publication in The Astrophysical Journal. Scheduled for the ApJ August 20, 2008, v683 n 2 issue. 33 pages: 22 pages of main text + 2 tables + 6 postscript figures, use aastex
- Published
- 2008
41. Optical and infrared diagnostics of SDSS galaxies in the SWIRE survey
- Author
-
T. Evans, Seb Oliver, Giulia Rodighiero, Carol J. Lonsdale, Stefano Berta, Jason Surace, Fan Fang, I. Waddington, Harding E. Smith, Dave Shupe, Michael Rowan-Robinson, A. Afonso-Luis, Francesca Pozzi, Evanthia Hatziminaoglou, Mari Polletta, Duncan Farrah, P. Davoodi, Davoodi P., Pozzi F., Oliver S., Polletta M., Afonso-Luis A., Farrah D., Hatziminaoglou E., Rodighiero G., Berta S., Waddington I., Lonsdale C., Rowan-Robinson M., Shupe D. L., Evans T., Fang F., Smith H. E., and Surace J.
- Subjects
Physics ,Infrared excess ,Infrared ,media_common.quotation_subject ,Astrophysics (astro-ph) ,Extinction (astronomy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy ,Luminosity ,Space and Planetary Science ,Sky ,Bulge ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Emission spectrum ,Caltech Library Services ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We present the rest-frame optical and infrared colours of a complete sample of 1114 z, 14 pages, 8 figures, 4 tables. Accepted for publication in MNRAS
- Published
- 2006
- Full Text
- View/download PDF
42. The contribution of very massive high-redshift SWIRE galaxies to the stellar mass function
- Author
-
Chiara Feruglio, I. Matute, F. La Franca, Carol J. Lonsdale, S. Berta, H. Buttery, Jason Surace, Seb Oliver, Stefano Rubele, J. E. Dias, Alessandro Marconi, Roberto Maiolino, Richard S. Savage, N. Sacchi, Alberto Franceschini, E. Ricciardelli, Maria del Carmen Polletta, David L. Shupe, Andrea Cimatti, Fabrizio Fiore, Enrico V. Held, Berta S., Lonsdale C. J., Polletta M., Savage R. S., Franceschini A., Buttery H., Cimatti A., Dias J., Feruglio C., Fiore F., Held E. V., La Franca F., Maiolino R., Marconi A., Matute I., Oliver S. J., Ricciardelli E., Rubele S., Sacchi N., Shupe D., and Surace J.
- Subjects
Physics ,Number density ,Field (physics) ,Stellar mass ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Function (mathematics) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift ,Galaxy ,Stars ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
(Abridged) We selected high-z massive galaxies at 5.8 microns, in the SWIRE ELAIS-S1 field (1 sq. deg.). Galaxies with the 1.6 microns stellar peak redshifted into the IRAC bands (z~1-3, called ``IR-peakers'') were identified. Stellar masses were derived by means of spectro-photometric fitting and used to compute the stellar mass function (MF) at z=1-2 and 2-3. A parametric fit to the MF was performed, based on a Bayesian formalism, and the stellar mass density of massive galaxies above z=2 determined. We present the first systematic study of the very-massive tail of the galaxy stellar mass function at high redshift. A total of 326 sources were selected. The majority of these galaxies have stellar masses in excess of 1e11 Msun and lie at z>1.5. The availability of mid-IR data turned out to be a valuable tool to constrain the contribution of young stars to galaxy SEDs, and thus their M(stars)/L ratio. The influence of near-IR data and of the chosen stellar library on the SED fitting are also discussed. A significant evolution is found not only for galaxies with M~1e11 Msun, but also in the highest mass bins considered. The comoving number density of these galaxies was lower by more than a factor of 10 at z=2-3, with respect to the local estimate. SWIRE 5.8 micron peakers more massive than 1.6x1e11 Msun provide 30-50% of the total stellar mass density in galaxies at z=2-3., Accepted for publication on A&A. 31 pages. The quality of some figures has been degraded for arXiv purposes
- Published
- 2007
43. Herschel unveils a puzzling uniformity of distant dusty galaxies
- Author
-
D. Elbaz, H. S. Hwang, B. Magnelli, E. Daddi, H. Aussel, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, R.-R. Chary, A. Cimatti, D. L. Clements, A. Conley, L. Conversi, A. Cooray, M. Dickinson, H. Dominguez, C. D. Dowell, J. S. Dunlop, E. Dwek, S. Eales, D. Farrah, N. Förster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R. J. Ivison, G. Lagache, D. Le Borgne, E. Le Floc'h, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, G. Magdis, G. Mainetti, R. Maiolino, L. Marchetti, A. M. J. Mortier, H. T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Perez Fournon, A. M. Pérez García, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J. I. Rawlings, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I. G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, D. Scott, N. Seymour, L. Shao, D. L. Shupe, A. J. Smith, J. A. Stevens, E. Sturm, M. Symeonidis, L. Tacconi, M. Trichas, K. E. Tugwell, M. Vaccari, I. Valtchanov, J. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, M. Zemcov, Observatoire Astronomique de Marseille Provence (OAMP), Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Elbaz D., Hwang H. S., Magnelli B., Daddi E., Aussel H., Altieri B., Amblard A., Andreani P., Arumugam V., Auld R., Babbedge T., Berta S., Blain A., Bock J., Bongiovanni A., Boselli A., Buat V., Burgarella D., Castro-Rodriguez N., Cava A., Cepa J., Chanial P., Chary R.-R., Cimatti A., Clements D. L., Conley A., Conversi L., Cooray A., Dickinson M., Dominguez H., Dowell C. D., Dunlop J. S., Dwek E., Eales S., Farrah D., Förster Schreiber N., Fox M., Franceschini A., Gear W., Genzel R., Glenn J., Griffin M., Gruppioni C., Halpern M., Hatziminaoglou E., Ibar E., Isaak K., Ivison R. J., Lagache G., Le Borgne D., Le Floc'h E., Levenson L., Lu N., Lutz D., Madden S., Maffei B., Magdis G., Mainetti G., Maiolino R., Marchetti L., Mortier A. M. J., Nguyen H. T., Nordon R., O'Halloran B., Okumura K., Oliver S. J., Omont A., Page M. J., Panuzzo P., Papageorgiou A., Pearson C. P., Perez Fournon I., Pérez García A. M., Poglitsch A., Pohlen M., Popesso P., Pozzi F., Rawlings J. I., Rigopoulou D., Riguccini L., Rizzo D., Rodighiero G., Roseboom I. G., Rowan-Robinson M., Saintonge A., Sanchez Portal M., Santini P., Sauvage M., Schulz B., Scott D., Seymour N., Shao L., Shupe D. L., Smith A. J., Stevens J. A., Sturm E., Symeonidis M., Tacconi L., Trichas M., Tugwell K. E., Vaccari M., Valtchanov I., Vieira J., Vigroux L., Wang L., Ward R., Wright G., Xu C. K., and Zemcov M.
- Subjects
Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,infrared: galaxies ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Star formation ,Bolometer ,Astronomy and Astrophysics ,Redshift ,Space observatory ,Galaxy ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved since z~2.5. We use Herschel deep extragalactic surveys from 100 to 500um to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used to identify isolated galaxies whose flux is not boosted by bright neighbors. Below z~1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15dex), therefore similar to z~0 galaxies. This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160um, 250um or 350um bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ~150um (rest-frame) on local templates. We also note that the dust temperature of luminous IR galaxies around z~1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z~1.6. Above z=1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor star formation at very high SFR and in conditions similar to purely star-forming galaxies., Astronomy and Astrophysics, Herschel Special Issue, in press as a Letter; 5 pages
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.