21 results on '"ter Veen S."'
Search Results
2. A large light-mass component of cosmic rays at 10^{17} - 10^{17.5} eV from radio observations
- Author
-
Buitink, S., Corstanje, A., Falcke, H., H��randel, J. R., Huege, T., Nelles, A., Rachen, J. P., Rossetto, L., Schellart, P ., Scholten, O., ter Veen, S., Thoudam, S., Trinh, T. N. G., Anderson, J., Asgekar, A., Avruch, I. M., Bell, M. E., Bentum, M. J., Bernardi, G., Best, P., Bonafede, A., Breitling, F., Broderick, J. W., Brouw, W. N., Br��ggen, M., Butcher, H. R., Carbone, D., Ciardi, B., Conway, J. E., de Gasperin, F., de Geus, E., Deller, A., Dettmar, R. -J., van Diepen, G., Duscha, S., Eisl��ffel, J., Engels, D., Enriquez, J. E., Fallows, R. A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M. A., Griessmeier, J. M., Gunst, A. W., van Haarlem, M. P., Hassall, T. E., Heald, G., Hessels, J. W. T., Hoeft, M., Horneffer, A., Iacobelli, M., Intema, H., Juette, E., Karastergiou, A., Kondratiev, V. I., Kramer, M., Kuniyoshi, M., Kuper, G., van Leeuwen, J., Loose, G. M., Maat, P., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., McKean, J. P., Mevius, M., Mulcahy, D. D., Munk, H., Norden, M. J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V. N., Pietka, M., Pizzo, R., Polatidis, A. G., Reich, W., R��ttgering, H. J. A., Scaife, A. M. M., Schwarz, D. J., Serylak, M., Sluman, J., Smirnov, O., Stappers, B. W., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Toribio, M. C., Vermeulen, R., Vocks, C., Vogt, C., van Weeren, R. J., Wijers, R. A. M. J., Wijnholds, S. J., Wise, M. W., Wucknitz, O., Yatawatta, S., Zarka, P., and Zensus, J. A.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,High Energy Physics - Experiment (hep-ex) ,hep-ex ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
Cosmic rays are the highest energy particles found in nature. Measurements of the mass composition of cosmic rays between 10^{17} eV and 10^{18} eV are essential to understand whether this energy range is dominated by Galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate cascades of secondary particles (air showers) in the atmosphere and their masses are inferred from measurements of the atmospheric depth of the shower maximum, Xmax, or the composition of shower particles reaching the ground. Current measurements suffer from either low precision, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique, suitable for determination of Xmax with a duty cycle of in principle nearly 100%. The radiation is generated by the separation of relativistic charged particles in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean precision of 16 g/cm^2 between 10^{17}-10^{17.5} eV. Because of the high resolution in $Xmax we can determine the mass spectrum and find a mixed composition, containing a light mass fraction of ~80%. Unless the extragalactic component becomes significant already below 10^{17.5} eV, our measurements indicate an additional Galactic component dominating at this energy range., 35 pages, 11 figures, updated version: Pierre Auger Observatory data ICRC 2015 added to Fig 2
- Published
- 2016
- Full Text
- View/download PDF
3. A large light-mass component of cosmic rays at 1017-1017.5 electronvolts from radio observations
- Author
-
Buitink, S, Corstanje, A, Falcke, H, Hörandel, JR, Huege, T, Nelles, A, Rachen, JP, Rossetto, L, Schellart, P, Scholten, O, Ter Veen, S, Thoudam, S, Trinh, TNG, Anderson, J, Asgekar, A, Avruch, IM, Bell, ME, Bentum, MJ, Bernardi, G, Best, P, Bonafede, A, Breitling, F, Broderick, JW, Brouw, WN, Brüggen, M, Butcher, HR, Carbone, D, Ciardi, B, Conway, JE, De Gasperin, F, De Geus, E, Deller, A, Dettmar, RJ, Van Diepen, G, Duscha, S, Eislöffel, J, Engels, D, Enriquez, JE, Fallows, RA, Fender, R, Ferrari, C, Frieswijk, W, Garrett, MA, Grießmeier, JM, Gunst, AW, Van Haarlem, MP, Hassall, TE, Heald, G, Hessels, JWT, Hoeft, M, Horneffer, A, Iacobelli, M, Intema, H, Juette, E, Karastergiou, A, Kondratiev, VI, Kramer, M, Kuniyoshi, M, Kuper, G, Van Leeuwen, J, Loose, GM, Maat, P, Mann, G, Markoff, S, McFadden, R, McKay-Bukowski, D, McKean, JP, Mevius, M, Mulcahy, DD, Munk, H, Norden, MJ, Orru, E, Paas, H, Pandey-Pommier, M, Pandey, VN, Pietka, M, Pizzo, R, Polatidis, AG, Reich, W, Röttgering, HJA, Scaife, AMM, Schwarz, DJ, Serylak, M, Sluman, J, Smirnov, O, Stappers, BW, Steinmetz, M, Stewart, A, Swinbank, J, Tagger, M, Tang, Y, Tasse, C, Toribio, MC, Vermeulen, R, Vocks, C, Vogt, C, Van Weeren, RJ, Wijers, RAMJ, Wijnholds, SJ, and Wise, MW
- Subjects
General Science & Technology ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
© 2016 Macmillan Publishers Limited. All rights reserved. Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017-1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers - cascades of secondary particles in the atmosphere - and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017-1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017-1017.5 electronvolt range.
- Published
- 2015
4. Cosmic rays as probes of atmospheric electric fields
- Author
-
Scholten, O., Trinh, G. T. N., Schellart, P., Ebert, U., Rutjes, C., Nelles, A., Buitink, S., ter Veen, S., Horandel, J., Corstanje, A., Rachen, J. P., Thoudam, S., Falcke, H., Koehn, C. C., van den Berg, A. A. M., de Vries, K. K. D., Rossetto, L., and Research unit Astroparticle Physics
- Subjects
ATMOSPHERIC PROCESSES ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,3304 Atmospheric electricity ,3324 Lightning ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics::Atmospheric and Oceanic Physics - Abstract
Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate radio waves which have been detected with LOFAR, a large and dense array of simple antennas primarily developed for radio-astronomy observations.LOFAR has observed air showers under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For air showers under fair-weather conditions the intensity as well as the polarization of the radio emission can be understood rather accurately from the present models.For air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the orientation of the electric fields at different heights in the thunderstorm clouds. We will show for the first time that the circular polarization of the radio waves tells about the change of orientation of the fields with altitude. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed.We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way.
- Published
- 2015
5. A method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles
- Author
-
Buitink, S., Corstanje, A., Enriquez, J. E., Falcke, H., H��randel, J. R., Huege, T., Nelles, A., Rachen, J. P., Schellart, P., Scholten, O., ter Veen, S., Thoudam, S., and Trinh, T. N. G.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well-understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17 g/cm^2., 12 pages, 10 figures, submitted to Phys. Rev. D
- Published
- 2014
6. Lunar detection of ultra-high-energy cosmic rays and neutrinos
- Author
-
Bray, J. D., Alvarez-Muñiz, J., Buitink, S., Dagkesamanskii, R. D., Ekers, R. D., Falcke, H., Gayley, K. G., Huege, T., James, C. W., Mevius, M., Mutel, R. L., Protheroe, R. J., Scholten, O., Spencer, R. E., ter Veen, S., and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Due to their extremely low flux, even the 3,000 km^2 Pierre Auger detector registers only about 30 cosmic rays per year with sufficiently high energy to be used for directional studies. A method to provide a vast increase in collecting area is to use the lunar technique, in which ground-based radio telescopes search for the nanosecond radio flashes produced when a cosmic ray interacts with the Moon's surface. The technique is also sensitive to the associated flux of UHE neutrinos, which are expected from cosmic ray interactions during production and propagation, and the detection of which can also be used to identify the UHE cosmic ray source(s). An additional flux of UHE neutrinos may also be produced in the decays of topological defects from the early Universe. Observations with existing radio telescopes have shown that this technique is technically feasible, and established the required procedure: the radio signal should be searched for pulses in real time, compensating for ionospheric dispersion and filtering out local radio interference, and candidate events stored for later analysis. For the SKA, this requires the formation of multiple tied-array beams, with high time resolution, covering the Moon, with either SKA-LOW or SKA-MID. With its large collecting area and broad bandwidth, the SKA will be able to detect the known flux of UHE cosmic rays using the visible lunar surface - millions of square km - as the detector, providing sufficient detections of these extremely rare particles to solve the mystery of their origin.
- Published
- 2014
7. LOFAR: Detecting Cosmic Rays with a Radio Telescope
- Author
-
Corstanje, A., Akker, M. van den, Bähren, L., Falcke, H., Frieswijk, W., Hörandel, J. R., Horneffer, A., James, C. W., Kelley, J. L., McFadden, R., Mevius, M., Nelles, A., Schellart, P., Scholten, O., Thoudam, S., ter Veen, S., Research unit Astroparticle Physics, and Astronomy
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ideal for the detection of broadband radio pulses generated in cosmic ray air showers. The core of LOFAR consists of 24 stations within 4 square kilometers, and each station contains 96 low-band antennas and 48 high-band antennas. This dense instrumentation will allow detailed studies of the lateral distribution of the radio signal in a frequency range of 10-250 MHz. Such studies are key to understanding the various radio emission mechanisms within the air shower, as well as for determining the potential of the radio technique for primary particle identification. We present the status of the LOFAR cosmic ray program, including the station design and hardware, the triggering and filtering schemes, and our initial observations of cosmic-ray-induced radio pulses., Comment: Contribution to the 32nd International Cosmic Ray Conference (Beijing, China, 11-18 Aug. 2011); 4 pages, 4 figures
- Published
- 2011
8. FRATs: a real-time search for Fast Radio Transients with LOFAR
- Author
-
Ter Veen, S., Falcke, H., Fender, R., Hörandel, J. R., Clancy James, Rawlings, S., Schellart, P., Stappers, B., Wijers, R., Wise, M., Zarka, P., and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Proceedings of Science ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
The radio sky is not steady on timescales below one second. Pulsars (including the rotating radio transients RRATs) and solar-system objects (e.g. solar flares, jupiter bursts, saturn lightning) give rise to sub-second pulses. Also in many known radiation processes coherent radiation can more easily occur at longer wavelengths, for which the size of the emitting region is comparable to the wavelength. This makes low frequency surveys ideally suited for the detection of new emission mechanisms caused by compact objects, such as white dwarfs, neutron stars and black holes. To detect as many of these Fast Radio Transients (FRATs) as possible, we are setting up a technique to detect and identify short single pulses with LOFAR in real-time, with unprecedented sensitivity in this frequency range, and excellent discrimination against terrestrial signals.
- Published
- 2010
9. Radio detection of cosmic rays with LOFAR
- Author
-
Hörandel, J. R., Buitink, S., Corstanje, A., Enriquez, J. E., Falcke, H., Karskens, T., Krause, M., Nelles, A., Rachen, J. P., Rossetto, L., Schellart, P., Olaf Scholten, Ter Veen, S., Thoudam, S., Trinh, T. N. G., and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
When high-energy cosmic rays (ionized atomic nuclei) impinge on the atmosphere of the Earth they interact with atomic nuclei and initiate cascades of secondary particles - the extensive air showers. Many of the secondary particles in the air showers are electrons and positrons. They cause radiation in the frequency range of tens of MHz. The LOFAR radio telescope detects this radiation in the frequency range 30 to 240 MHz. LOFAR has a high antenna density and good time resolution. In turn, the properties of the radio emission are measured in detail. The properties of the shower-inducing cosmic rays are derived from the air shower measurements, namely their direction, energy, and particle type (atomic mass). The uncertainties achieved are competative to established techniques. This demonstrates that the radio technique is now a standard tool to measure extensive air showers and to study the properties of the incoming cosmic rays. The mean logarithmic mass of cosmic rays as measured with LOFAR is derived as a function of energy. In an examplary study, these data are used to show that the radio measurements of air showers are now in a state to discriminate astrophysical models of the origin of cosmic rays.
10. The cosmic-ray energy spectrum above 1016 eV measured with the LOFAR radboud air shower array
- Author
-
Thoudam, S., Buitink, S., Corstanje, A., Enriquez, J. E., Falcke, H., Hörandel, J. R., Anna Nelles, Rachen, J. P., Rossetto, L., Schellart, P., Scholten, O., Ter Veen, S., Trinh, T. N. G., Kessel, L., and Research unit Astroparticle Physics
- Subjects
Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics::Atmospheric and Oceanic Physics - Abstract
The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out of the LOFAR radio antennas to record radio signals from air showers, and to assist the reconstruction of air shower properties with LOFAR by providing basic air shower parameters, such as the position of the shower axis on the ground, the arrival direction and the energy of the incoming cosmic ray. In this paper, we describe the various steps involved in the energy reconstruction of air showers measured with LORA, and present the all-particle cosmicray energy spectrum above 1016 eV reconstructed for the two extreme scenarios: pure protons and iron nuclei.
11. Polarized radio emission and radio wavefront shape of extensive air showers
- Author
-
Corstanje, A., Buitink, S., Enriquez, J. E., Falcke, H., Hörandel, J. R., Anna Nelles, Rachen, J. P., Rossetto, L., Schellart, P., Scholten, O., Ter Veen, S., Thoudam, S., Trinh, T. N. G., and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
The LOFAR radio telescope located in the north of the Netherlands offers a high density of omnidirectional radio antennas. The LOFAR key science project Cosmic Rays is therefore well suited for detailed studies of the radio signal from air showers, and has been measuring since mid-2011 at primary energies in the range of 1017 to 1018 eV. We present high-precision measurements of the polarization of the radio signals, and the shape of the radio wavefront from the lateral distribution of signal arrival times. Polarization and timing of the incoming radio pulse are complementary observables to the lateral distribution of signal power. These are shown to provide additional information on the air shower geometry and on the contribution of different radio emission mechanisms, such as the geomagnetic and charge excess processes.
12. Extension of the lofar radboud air shower array
- Author
-
Mulrey, K., Bonardi, A., Buitink, S., Corstanje, A., Falcke, H., Hare, B. M., Hörandel, J. R., Huege, T., Krampah, G., Mitra, P., Nelles, A., Pandya, H., Jörg Paul Rachen, Rossetto, L., Scholten, O., Ter Veen, S., Trinh, T. N. G., Veberic, D., and Winchen, T.
- Subjects
Physics::Instrumentation and Detectors ,Physics ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,ddc:530 ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
The LOFAR Radboud Air Shower Array (LORA) is an array of scintillators situated at the core of the LOFAR radio telescope. LORA detects particles from extensive air showers and acts as a trigger for the readout of the LOFAR antennas, which are densely spaced and routinely measure radio emission from air showers around 1017 eV. LORA originally consisted of 20 scintillators. An extension is underway that doubles the number of scintillators and increases the effective area of the array. This will result in a 45% increase in the number of triggers from higher energy cosmic rays, which are more likely to produce a strong radio signal. In addition, it will reduce the composition bias inherent in detecting low energy showers. In this contribution we discuss the status of the LORA extension and prospects for the science that can be done with the expanded triggering capabilities and improved calibration of the detector.
13. The lunar askaryan technique with the square kilometre array
- Author
-
James, C. W., Jaime Alvarez-Muniz, Bray, J. D., Buitink, S., Dagkesamanskii, R. D., Ekers, R. D., Falcke, H., Gayley, K. G., Huege, T., Mevius, M., Mutel, R. L., Protheroe, R. J., Scholten, O., Spencer, R. E., Ter Veen, S., Astronomy, and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
The lunar Askaryan technique is a method to study the highest-energy cosmic rays and their predicted counterparts, the ultra-high-energy neutrinos. By observing the Moon with a radio telescope, and searching for the characteristic nanosecond-scale Askaryan pulses emitted when a high-energy particle interacts in the outer layers of the Moon, the visible lunar surface can be used as a detection area. Several previous experiments, at Parkes, Goldstone, Kalyazin, Westerbork, the ATCA, Lovell, LOFAR, and the VLA, have developed the necessary techniques to search for these pulses, but existing instruments have lacked the necessary sensitivity to detect the known flux of cosmic rays from such a distance. This will change with the advent of the SKA. The Square Kilometre Array (SKA) will be the world's most powerful radio telescope. To be built in southern Africa, Australia and New Zealand during the next decade, it will have an unsurpassed sensitivity over the key 100 MHz to few-GHZ band. We introduce a planned experiment to use the SKA to observe the highest-energy cosmic rays and, potentially, neutrinos. The estimated event rate will be presented, along with the predicted energy and directional resolution. Prospects for directional studies with phase 1 of the SKA will be discussed, as will the major technical challenges to be overcome to make full use of this powerful instrument. Finally, we show how phase 2 of the SKA could provide a vast increase in the number of detected cosmic rays at the highest energies, and thus to provide new insight into their spectrum and origin.
14. A study of the radio frequency spectrum emitted by high-energy air showers with LOFAR
- Author
-
Rossetto, L., Buitink, S., Corstanje, A., Enriquez, J. E., Falcke, H., Hörandel, J. R., Nelles, A., Jörg Paul Rachen, Schellart, P., Scholten, O., Ter Veen, S., Thoudam, S., Trinh, T. N. G., and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
The LOw Frequency ARray (LOFAR) is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10 - 240 MHz, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. The detection of the radio signal emitted by extensive air showers allows to reconstruct the geometry of the observed cascade. Thus, several properties of primary particles (e.g. arrival direction, mass composition) can be inferred. We describe a study of several geometrical parameters of the radio signal emitted by extensive air showers propagating in the atmosphere, and their correlation with the observed radio frequency spectrum. In order to find the best parameters that describe the correlation between primary cosmic ray information and the emitted radio signal, a preliminary study on simulated events has been done. Monte Carlo simulations of radio signals have been produced by using the CoREAS code, a plug-in of the CORSIKA particle simulation code. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays.
15. LOFAR discovery of a quiet emission mode in PSR B0823+26
- Author
-
F. Breitling, Gottfried Mann, R. Pizzo, John D. Anderson, Cees Bassa, Sera Markoff, Rene P. Breton, Ashish Asgekar, Charlotte Sobey, E. Jütte, George Heald, Heino Falcke, P. Maat, M. J. Norden, M. A. Garrett, Jean-Mathias Grießmeier, Ph. Zarka, Rebecca McFadden, H. Paas, Ben Stappers, E. de Geus, Sarod Yatawatta, V. I. Kondratiev, D. D. Mulcahy, J. van Leeuwen, S. ter Veen, M. Pilia, M. Pandey-Pommier, Ralph A. M. J. Wijers, A. W. Gunst, J. Sluman, Olaf Wucknitz, H. J. A. Röttgering, Philip Best, Christian Vocks, D. McKay-Bukowski, Michel Tagger, D. Carbone, A. Alexov, Andrew Lyne, Antonia Rowlinson, A. Noutsos, Adam Stewart, Chiara Ferrari, T. E. Hassall, Evan Keane, Patrick Weltevrede, Jason W. T. Hessels, Satyendra Thoudam, S. Duscha, M. Serylak, A. van Duin, G. Pietka, Laura Birzan, Jochen Eislöffel, J. P. Hamaker, Wilfred Frieswijk, C. Toribio, Michael Kramer, D. A. Rafferty, A. G. Polatidis, Arthur Corstanje, A. Nelles, John D. Swinbank, Y. Tang, Anna M. M. Scaife, Martin Bell, N. J. Young, V. N. Pandey, Gerard H. Kuper, Cyril Tasse, J. W. Broderick, H. Munk, John McKean, Marcus Brüggen, Matthias Steinmetz, Annalisa Bonafede, A. Renting, Richard Fallows, R. Vermeulen, Mark J. Bentum, Matthias Hoeft, M. de Vos, Aris Karastergiou, Michael W. Wise, Gianni Bernardi, Jörg R. Hörandel, Rob Fender, Oleg Smirnov, Emanuela Orru, Dominik J. Schwarz, I. M. Avruch, Anna V. Bilous, R. J. van Weeren, Sobey, C., Young, N.J., Hessels, J.W.T., Weltevrede, P., Noutsos, A., Stappers, B.W., Kramer, M., Bassa, C., Lyne, A.G., Kondratiev V.I., null, Hassall, T.E., Keane, E.F., Bilous, A.V., Breton, R.P., Grießmeier, J.M., Karastergiou, A., Pilia, M., Serylak, M., Ter Veen, S., Van Leeuwen, J., Alexov, A., Anderson, J., Asgekar, A., Avruch, I.M., Bell, M.E., Bentum, M.J., Bernardi, G., Best, P., Bĭrzan, L., Bonafede, A., Breitling, F., Broderick, J., Brüggen, M., Corstanje, A., Carbone, D., De Geus, E., De Vos, M., Van Duin, A., Duscha, S., Eislöffel, J., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Gunst, A.W., Hamaker, J.P., Heald, G., Hoeft, M., Hörandel, J., Jütte, E., Kuper, G., Maat, P., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., McKean, J.P., Mulcahy, D.D., Munk, H., Nelles, A., Norden, M.J., Orrù, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pietka, G., Pizzo, R., Polatidis, A.G., Rafferty, D., Renting, A., Röttgering, H., Rowlinson, A., Scaife, A.M.M., Schwarz, D., Sluman, J., Smirnov, O., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., Van Weeren, R.J., Wijers, R.A.M.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P., Max-Planck-Institut für Radioastronomie (MPIFR), University of Minnesota [Twin Cities] (UMN), University of Minnesota System, University of Amsterdam [Amsterdam] (UvA), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Columbia Astrophysics Laboratory (CAL), Columbia University [New York], Cornell University [New York], Netherlands Institute for Radio Astronomy (ASTRON), Centre for Astrophysics and Supercomputing [Swinburne] (CAS), Swinburne University of Technology [Melbourne], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University [Nijmegen], Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, Oxford Astrophysics, University of Oxford, Institute for Mathematics Applied to Geoscience, National Center for Atmospheric Research [Boulder] (NCAR), SRON Netherlands Institute for Space Research (SRON), CSIRO Astronomy and Space Science, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Edinburgh, Leiden Observatory [Leiden], Universiteit Leiden, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Medstar Research Institute, Thüringer Landessternwarte Tautenburg (TLS), Institute of Mathematical and Physical Sciences, Département de Géologie, Université de Montréal (UdeM), University Bochum, Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Oulu, Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Radio Astronomy Observatory [Charlottesville] (NRAO), National Radio Astronomy Observatory (NRAO), Department of Astronomy and Astrophysics [PennState], Pennsylvania State University (Penn State), Penn State System-Penn State System, School of Physics and Astronomy [Southampton], Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Université Paris-Sud - Paris 11 (UP11), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), SKA South Africa, Ska South Africa, Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, We would like to thank R. Karuppusamy for his help with the Effelsberg observations. CF acknowledges financial support by the Agence Nationale de la Recherche through grant ANR-09-JCJC-0001-01., European Project: 337062,EC:FP7:ERC,ERC-2013-StG,DRAGNET(2014), ITA, GBR, FRA, DEU, NLD, Radboud university [Nijmegen], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO), University of Oxford [Oxford], Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universiteit Leiden [Leiden], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Harvard University [Cambridge]-Smithsonian Institution, Astronomy, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
stars ,PSR B0823+26-radio telescopes ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Pulsar planet ,FOS: Physical sciences ,neutron- pulsars ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,neutron [stars] ,Pulsar ,Millisecond pulsar ,Pulsars: individual: PSR B0823+26 ,individual ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Stars: neutron ,Stars ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,magnetosphere-pulsars ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,QUIET ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Astrophysics - High Energy Astrophysical Phenomena ,individual: PSR B0823+26 [pulsars] - Abstract
PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over timescales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR discovery that PSR B0823+26 has a weak and sporadically emitting 'quiet' (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting 'bright' (B) mode. Previously, the pulsar has been undetected in the Q-mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B-mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q-mode and B-mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed., Comment: 15 pages, 8 figures, 2 tables, accepted for publication in MNRAS
- Published
- 2015
- Full Text
- View/download PDF
16. Synchronous X-ray and Radio Mode Switches: A Rapid Global Transformation of the Pulsar Magnetosphere
- Author
-
Y. Tang, Anna M. M. Scaife, Steve Rawlings, Aris Karastergiou, Michael W. Wise, Harvey Butcher, B. Ciardi, S. Duscha, V. N. Pandey, Gianni Bernardi, John McKean, Charlotte Sobey, Emanuela Orrú, Chiara Ferrari, M. Kuniyoshi, H. Munk, Marcus Brüggen, Michael Kramer, Cyril Tasse, J. W. Broderick, E. de Geus, Ashish Asgekar, Jason W. T. Hessels, F. de Gasperin, Matthias Hoeft, George Heald, L. Kuiper, A. P. Schoenmakers, P. Maat, R. H. van de Brink, Sera Markoff, Dipanjan Mitra, Philip Best, G. Wright, Ralph A. M. J. Wijers, J. de Plaa, Heino Falcke, V. I. Kondratiev, Rahul Basu, A. Noutsos, T. Coenen, Benjamin Stappers, Michel Tagger, Frank Breitling, Giulia Macario, Rob Fender, Rene C. Vermeulen, Michael R. Bell, F. Batejat, A. Alexov, Marco Iacobelli, H. Paas, Sarod Yatawatta, Patrick Weltevrede, Tim Hassall, R. J. van Weeren, W. Reich, M. Pilia, Laura Birzan, W. Hermsen, Evan Keane, Aleksandar Shulevski, Mark J. Bentum, M. Serylak, Martin Bell, Annalisa Bonafede, J. van Leeuwen, A. Horneffer, Jochen Eislöffel, Maaijke Mevius, H. J. A. Röttgering, A. G. Polatidis, R. Morganti, I. M. Avruch, S. ter Veen, A. W. Gunst, Olaf Wucknitz, Matthias Steinmetz, M. Pandey-Pommier, K. Zagkouris, J. Sluman, Roberto Pizzo, Jean-Mathias Grießmeier, G. Kuper, Philippe Zarka, Joanna M. Rankin, M. A. Garrett, James Miller-Jones, Wilfred Frieswijk, Hermsen, W., Hessels, J.W.T., Kuiper, L., Van Leeuwen, J., Mitra, D., De Plaa, J., Rankin, J.M., Stappers, B.W., Wright, G.A.E., Basu, R., Alexov, A., Coenen, T., Grießmeier, J.-M., Hassall, T.E., Karastergiou, A., Keane, E., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Noutsos, A., Serylak, M., Pilia, M., Sobey, C., Weltevrede, P., Zagkouris, K., Asgekar, A., Avruch, I.M., Batejat, F., Bell, M.E., Bell, M.R., Bentum, M.J., Bernardi, G., Best, P., Bîrzan, L., Bonafede, A., Breitling, F., Broderick, J., Brüggen, M., Butcher, H.R., Ciardi, B., Duscha, S., Eislöffel, J., Falcke, H., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., De Gasperin, F., De Geus, E., Gunst, A.W., Heald, G., Hoeft, M., Horneffer, A., Iacobelli, M., Kuper, G., Maat, P., Macario, G., Markoff, S., McKean, J.P., Mevius, M., Miller-Jones, J.C.A., Morganti, R., Munk, H., Orrú, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pizzo, R., Polatidis, A.G., Rawlings, S., Reich, W., Röttgering, H., Scaife, A.M.M., Schoenmakers, A., Shulevski, A., Sluman, J., Steinmetz, M., Tagger, M., Tang, Y., Tasse, C., Ter Veen, S., Vermeulen, R., Van De Brink, R.H., Van Weeren, R.J., Wijers, R.A.M.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P., SRON Netherlands Institute for Space Research (SRON), University of Amsterdam [Amsterdam] (UvA), National Centre for Radio Astrophysics [Pune] (NCRA), Tata Institute for Fundamental Research (TIFR), University of Vermont [Burlington], Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Astronomy Centre, University of Sussex, Space Telescope Science Institute (STSci), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Oxford Astrophysics, University of Oxford, Centre for Astrophysics and Supercomputing, Swinburne University of Technology [Melbourne], Netherlands Institute for Radio Astronomy (ASTRON), Max-Planck-Institut für Radioastronomie (MPIFR), Onsala Space Observatory (OSO), Chalmers University of Technology [Göteborg], University of Southampton, Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, University of Edinburgh, Leiden Observatory [Leiden], Universiteit Leiden, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Thüringer Landessternwarte Tautenburg (TLS), Radboud University [Nijmegen], Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Medstar Research Institute, Kapteyn Astronomical Institute [Groningen], University of Groningen [Groningen], Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Radio Astronomy Observatory [Charlottesville] (NRAO), National Radio Astronomy Observatory (NRAO), School of Physics and Astronomy [Southampton], SKA South Africa, Ska South Africa, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, ANR-09-JCJC-0001,OPALES(2009), Kapteyn Astronomical Institute, Astronomy, Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), University of Oxford [Oxford], Harvard University [Cambridge]-Smithsonian Institution, Universiteit Leiden [Leiden], Radboud university [Nijmegen], Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Electromagnetic field ,POLARIZATION ,Electromagnetic spectrum ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,FOS: Physical sciences ,Magnetosphere ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,EMPIRICAL-THEORY ,01 natural sciences ,Binary pulsar ,Pulsar ,Millisecond pulsar ,0103 physical sciences ,010306 general physics ,XMM-NEWTON OBSERVATIONS ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,DRIFTING SUBPULSES ,Multidisciplinary ,B0943+10 ,Polarization (waves) ,GAMMA-RAY ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,RADIATION ,EMISSION ,Astrophysics - High Energy Astrophysical Phenomena ,PHOTON IMAGING CAMERA ,POWERED PULSARS ,Radio wave - Abstract
Pulsars emit low-frequency radio waves through to high-energy gamma-rays that are generated anywhere from the surface out to the edges of the magnetosphere. Detecting correlated mode changes in the multi-wavelength emission is therefore key to understanding the physical relationship between these emission sites. Through simultaneous observations, we have detected synchronous switching in the radio and X-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio 'bright' mode, the X-rays show only an un-pulsed, non-thermal component. Conversely, when the pulsar is in a radio 'quiet' mode, the X-ray luminosity more than doubles and a 100%-pulsed thermal component is observed along with the non-thermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories., Paper published in Science including supplementary material
- Published
- 2013
- Full Text
- View/download PDF
17. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR
- Author
-
J. van Leeuwen, Matthias Steinmetz, T. E. Hassall, A. Nelles, E. de Geus, M. Pilia, B. W. Stappers, Heino Falcke, H. J. A. Röttgering, Annalisa Bonafede, Oleg Smirnov, Anna V. Bilous, Satyendra Thoudam, Evan Keane, Peter G. Jonker, W. Frieswijk, Rudy Wijnands, A. Noutsos, M. Pietka, John D. Swinbank, Richard Fallows, R. J. van Weeren, M. Pandey-Pommier, Olaf Wucknitz, A. Alexov, Rebecca McFadden, E. Juette, F. Breitling, Stefan J. Wijnholds, Aris Karastergiou, Benedetta Ciardi, H. Paas, Antonia Rowlinson, Dominik J. Schwarz, Michael Kramer, A. I. F. Stewart, Y. Tang, Ashish Asgekar, K. Zagkouris, James A. Anderson, Chiara Ferrari, S. Duscha, James Miller-Jones, Andrew Lyne, Stefan Oslowski, Adam T. Deller, A. de Jong, R. C. Vermeulen, Gianni Bernardi, I. M. Avruch, M. A. Garrett, M. C. Toribio, Jochen Eislöffel, Charlotte Sobey, A. J. van der Horst, Rene P. Breton, Cyril Tasse, Marcus Brüggen, J. W. Broderick, Gerard H. Kuper, S. ter Veen, A. W. Gunst, Rob Fender, P. Zarka, D. McKay-Bukowski, Martin Bell, A. Horneffer, M. Kuniyoshi, Patrick Weltevrede, M. Serylak, A. G. Polatidis, Ralph A. M. J. Wijers, Mark J. Bentum, Christian Vocks, Jean-Mathias Grießmeier, Sera Markoff, Jason W. T. Hessels, Stephane Corbel, Laura Birzan, J. P. Hamaker, Wolfgang Reich, Michel Tagger, P. Maat, V. I. Kondratiev, George Heald, Gottfried Mann, R. Pizzo, Astronomy, Netherlands Institute for Radio Astronomy (ASTRON), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Vrije Universiteit Medical Centre (VUMC), Vrije Universiteit Amsterdam [Amsterdam] (VU), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Oxford Astrophysics, University of Oxford, School of Physics and Astronomy [Southampton], University of Southampton, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University [Nijmegen], Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre for Astrophysics and Supercomputing [Swinburne] (CAS), Swinburne University of Technology [Melbourne], Department of Physics [Oxford], Max-Planck-Institut für Radioastronomie (MPIFR), Universität Bielefeld = Bielefeld University, University of Cape Town, Space Telescope Science Institute (STSci), Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), SRON Netherlands Institute for Space Research (SRON), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], University of Hamburg, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), University of Edinburgh, Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Structural Dynamics and Acoustics, University of Twente, Thüringer Landessternwarte Tautenburg (TLS), Institute of Mathematical and Physical Sciences, Department of Astrophysics [Oxford], Département de Géologie, Université de Montréal (UdeM), Astronomisches Institut der Ruhr-Universität Bochum, Ruhr-Universität Bochum [Bochum], Leibniz-Institut für Astrophysik Potsdam (AIP), Department of Physical Sciences, University of Oulu, University of Oulu, Curtin University [Perth], Planning and Transport Research Centre (PATREC), University of Groningen [Groningen], Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Australia Telescope National Facility (ATNF), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute of Farm Animal Genetics (ING), Friedrich-Loeffler-Institut (FLI), SKA South Africa, Ska South Africa, Astrophysikalisches Institut Potsdam (AIP), Department of Physics [Dunedin], University of Otago [Dunedin, Nouvelle-Zélande], Princeton University, Edinburgh Research Station, Centre for Ecology and Hydrology, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Astrophysics [Nijmegen], Radboud University [Nijmegen]-Radboud University [Nijmegen], Anton Pannekoek Institute for Astronomy, Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Alexander von Humboldt Foundation Agence Nationale de la Recherche ANR-09-JCJC-0001-01, ANR-09-JCJC-0001,OPALES(2009), European Project: 337062,EC:FP7:ERC,ERC-2013-StG,DRAGNET(2014), European Project: 617199,EC:FP7:ERC,ERC-2013-CoG,ALERT(2014), European Project: 224838,EC:FP7:PEOPLE,FP7-PEOPLE-2007-4-3-IRG,PULSARS WITH LOFAR(2008), ROUCHON, Nathalie, Jeunes chercheuses et jeunes chercheurs - - OPALES2009 - ANR-09-JCJC-0001 - JCJC - VALID, DRAGNET: A high-speed, wide-angle camera for catching extreme astrophysical events - DRAGNET - - EC:FP7:ERC2014-01-01 - 2018-12-31 - 337062 - VALID, ALERT - The Apertif-LOFAR Exploration of the Radio Transient Sky - ALERT - - EC:FP7:ERC2014-12-01 - 2019-11-30 - 617199 - VALID, Radio pulsars with LOFAR: a study of extreme physics laboratories. - PULSARS WITH LOFAR - - EC:FP7:PEOPLE2008-05-01 - 2012-04-30 - 224838 - VALID, High Energy Astrophys. & Astropart. Phys (API, FNWI), University of Oxford [Oxford], Radboud university [Nijmegen], Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Fakultät für Physik, Universität Bielefeld, Universität Bielefeld, University of the Western Cape, Cape Town, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), University of Twente [Netherlands], Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Radboud university [Nijmegen]-Radboud university [Nijmegen], Harvard University-Smithsonian Institution, Universiteit Leiden, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Pilia, M., Hessels, J.W.T., Stappers, B.W., Kondratiev, V.I., Kramer, M., Van Leeuwen, J., Weltevrede, P., Lyne, A.G., Zagkouris, K., Hassall, T.E., Bilous, A.V., Breton, R.P., Falcke, H., Grießmeier, J.-M., Keane, E., Karastergiou, A., Kuniyoshi, M., Noutsos, A., Osłowski, S., Serylak, M., Sobey, C., Ter Veen, S., Alexov, A., Anderson, J., Asgekar, A., Avruch, I.M., Bell, M.E., Bentum, M.J., Bernardi, G., Bîrzan, L., Bonafede, A., Breitling, F., Broderick, J.W., Brüggen, M., Ciardi, B., Corbel, S., De Geus, E., De Jong, A., Deller, A., Duscha, S., Eislöffel, J., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Gunst, A.W., Hamaker, J.P., Heald, G., Horneffer, A., Jonker, P., Juette, E., Kuper, G., Maat, P., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., Miller-Jones, J.C.A., Nelles, A., Paas, H., Pandey-Pommier, M., Pietka, M., Pizzo, R., Polatidis, A.G., Reich, W., Röttgering, H., Rowlinson, A., Schwarz, D., Smirnov, O., Steinmetz, M., Stewart, A., Swinbank, J.D., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, M.C., Van Der Horst, A.J., Vermeulen, R., Vocks, C., Van Weeren, R.J., Wijers, R.A.M.J., Wijnands, R., Wijnholds, S.J., Wucknitz, O., and Zarka, P.
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,METIS-321663 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,01 natural sciences ,Radio spectrum ,law.invention ,Telescope ,Radio telescope ,[SDU] Sciences of the Universe [physics] ,stars: neutron ,Pulsar ,law ,pulsars: general ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,IR-103184 ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Radio frequency ,EWI-27451 ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. We find that the profile evolution with decreasing radio frequency does not follow a specific trend but, depending on the geometry of the pulsar, new components can enter into, or be hidden from, view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories. We offer this catalog of low-frequency pulsar profiles in a user friendly way via the EPN Database of Pulsar Profiles (http://www.epta.eu.org/epndb/)., Comment: 38 pages, 11 figures, 5 tables, A&A in press, updated with editorial corrections
- Published
- 2016
- Full Text
- View/download PDF
18. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz
- Author
-
Vibor Jelić, Martin Bell, Gottfried Mann, Michael W. Wise, Gianni Bernardi, Wilfred Frieswijk, Jörg R. Hörandel, Garrelt Mellema, J. W. Broderick, J. Anderson, E. de Geus, George Heald, Y. Tang, K. M. B. Asad, M. J. Norden, Heino Falcke, Michiel A. Brentjens, Luitje Koopmans, V. I. Kondratiev, Arthur Corstanje, de Antonius Bruyn, A. Renting, Michel Tagger, Ben Stappers, Elizabeth Fernandez, F. de Gasperin, S. Kazemi, Emanuela Orrú, O. Martinez-Rubi, Rob Fender, A. Nelles, Oleg Smirnov, Stefan J. Wijnholds, P. Lambropoulos, A. R. Offringa, Annalisa Bonafede, Emma Chapman, Hannes Jensen, E. Juette, D. Engels, Sera Markoff, C. Toribio, Abhik Ghosh, F. B. Abdalla, Rebecca McFadden, Roberto Pizzo, Marco Iacobelli, Sarod Yatawatta, S. Daiboo, Satyendra Thoudam, W. Reich, D. McKay-Bukowski, Dominik J. Schwarz, D. D. Mulcahy, A. H. Patil, Frank Breitling, Jochen Eislöffel, B. Ciardi, Maaijke Mevius, Mark J. Bentum, C. Tasse, V. Veligatla, A. G. Polatidis, Matthias Steinmetz, S. Bus, Vishambhar Pandey, M. Kuniyoshi, Philippe Zarka, S. ter Veen, Adam Deller, Chiara Ferrari, A. W. Gunst, Ashish Asgekar, Matthias Hoeft, Philip Best, A. Shulevski, John D. Swinbank, H. Munk, Marcus Brüggen, Geraint Harker, Jean-Mathias Grießmeier, Tim Hassall, Christian Vocks, Saleem Zaroubi, Rajat M. Thomas, John McKean, Harvey Butcher, M. Pandey-Pommier, S. Duscha, Harish Vedantham, Richard Fallows, M. A. Garrett, H. J. A. Röttgering, Olaf Wucknitz, G. Kuper, Kapteyn Astronomical Institute [Groningen], University of Groningen [Groningen], UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT - INRA), Institut National de la Recherche Agronomique (INRA), Netherlands Institute for Radio Astronomy (ASTRON), University College of London [London] (UCL), Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Mécanique multiphysique pour les matériaux et les procédés (MULTIMAP), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Howard Hugues Medical Institute, Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Departamento de Geologıa, Universidad de Santiago de Chile [Santiago] (USACH), Advanced Computing and Microelectronics Unit [Kolkata] (ACMU), Indian Statistical Institute [Kolkata], Department of Physics and Astronomy [UCL London], Stockholm University, Department of process and energy, Delft University of Technology (TU Delft), Department of Physics, University of Crete [Heraklion] (UOC), Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas (FORTH), Stockholm Observatory Department of Astronomy, Department of Physics and Astronomy [Ghent], Ghent University [Belgium] (UGENT), Spatial Ecology and Epidemiology Group, University of Oxford [Oxford], Plant Ind, Hort Unit, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute for Mathematics Applied to Geoscience, National Center for Atmospheric Research [Boulder] (NCAR), CSIRO Astronomy and Space Science, University of Edinburgh, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Radboud university [Nijmegen], Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Metacohorts Consortium, Thüringer Landessternwarte Tautenburg (TLS), Département de Géologie, Université de Montréal [Montréal], Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Unité Scientifique de la Station de Nançay (USN), Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Ruhr-Universität Bochum [Bochum], Max-Planck-Institut für Radioastronomie (MPIFR), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), University of Oulu, Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Centre de Recherche Astrophysique de Lyon (CRAL), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Department of Astrophysics [Nijmegen], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud university [Nijmegen]-Radboud university [Nijmegen], Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), European Project: 258942,EC:FP7:ERC,ERC-2010-StG_20091028,FIRSTLIGHT(2010), Howard Hughes Medical Institute (HHMI), Universiteit Gent = Ghent University (UGENT), University of Oxford, Radboud University [Nijmegen], Université de Montréal (UdeM), Universiteit Leiden, Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Radboud University [Nijmegen]-Radboud University [Nijmegen], Agence Nationale de la Recherche (ANR-09-JCJC-0001-01), Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université de La Réunion (UR), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universiteit Gent = Ghent University [Belgium] (UGENT), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Vedantham, H.K., Koopmans, L.V.E., de Bruyn, A.G., Wijnholds, S.J., Brentjens, M., Abdalla, F.B., Asad, K.M.B., Bernardi, G., Bus, S., Chapman, E., Ciardi, B., Daiboo, S., Fernandez, E.R., Ghosh, A., Harker, G., Jelic, V., Jensen, H., Kazemi, S., Lambropoulos, P., Martinez-Rubi, O., Mellema, G., Mevius, M., Offringa, A.R., Pandey, V.N., Patil, A.H., Thomas, R.M., Veligatla, V., Yatawatta, S., Zaroubi, S., Anderson, J., Asgekar, A., Bell, M.E., Bentum, M.J., Best, P., Bonafede, A., Breitling, F., Broderick, J., Brüggen, M., Butcher, H.R., Corstanje, A., De Gasperin, F., De Geus, E., Deller, A., Duscha, S., Eislöffel, J., Engels, D., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Grießmeier, J., Gunst, A.W., Hassall, T.E., Heald, G., Hoeft, M., Hörandel, J., Iacobelli, M., Juette, E., Kondratiev, V.I., Kuniyoshi, M., Kuper, G., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., McKean, J.P., Mulcahy, D.D., Munk, H., Nelles, A., Norden, M.J., Orru, E., Pandey-Pommier, M., Pizzo, R., Polatidis, A.G., Reich, W., Renting, A., Röttgering, H., Schwarz, D., Shulevski, A., Smirnov, O., Stappers, B.W., Steinmetz, M., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Ter Veen, S., Thoudam, S., Toribio, C., Vocks, C., Wise, M.W., Wucknitz, O., Zarka, P., Astronomy, Kapteyn Astronomical Institute, ITA, GBR, FRA, DEU, NLD, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,first stars ,observational [methods] ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,methods: observational ,techniques: interferometric ,Moon ,dark ages ,reionization ,methods: observational – techniques: interferometric – Moon – cosmology: dark ages ,Occultation ,IR-98655 ,Reionization ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,EWI-26150 ,Astroparticle physics ,Physics ,Epoch (reference date) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Universe ,interferometric [techniques] ,Dark ages, reionization, first star ,Sky ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physics::Space Physics ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Dark Ages ,Astrophysics::Earth and Planetary Astrophysics ,METIS-314921 ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present radio observations of the Moon between $35$ and $80$ MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies $35z>12$) and the Epoch of Reionization ($12>z>5$)., Comment: 15 pages, 11 figures, 1 table
- Published
- 2015
- Full Text
- View/download PDF
19. Initial LOFAR observations of epoch of reionization windows. II. Diffuse polarized emission in the ELAIS-N1 field
- Author
-
F. de Gasperin, A. Horneffer, Jochen Eislöffel, M. A. Garrett, Geraint Harker, Michael Kramer, A. Nelles, J. van Leeuwen, Maaijke Mevius, Wilfred Frieswijk, Y. Tang, Anna M. M. Scaife, S. ter Veen, J. P. Hamaker, V. Veligatla, Marijke Haverkorn, G. Mann, A. W. Gunst, Chiara Ferrari, Rob Fender, D. Engels, Philip Best, Harish Vedantham, A. R. Offringa, John Conway, M. Iacobelli, M. Serylak, E. Juette, Hannes Jensen, James M. Anderson, C. Vocks, Annalisa Bonafede, Heino Falcke, Vibor Jelić, R. J. Dettmar, John McKean, Matthias Hoeft, A. H. Patil, J. W. Broderick, Saleem Zaroubi, P. Maat, Tim Hassall, Harvey Butcher, Aris Karastergiou, H. J. A. Röttgering, Rajat M. Thomas, M. J. Norden, V. I. Kondratiev, Olaf Wucknitz, M. Pandey-Pommier, H. Paas, Gianni Bernardi, Jörg R. Hörandel, Mark J. Bentum, Antonia Rowlinson, Michel Tagger, Garrelt Mellema, H. Munk, C. Tasse, O. Martinez-Rubi, W. Reich, J. D. Bregman, S. Kazemi, Abhik Ghosh, George Heald, Oleg Smirnov, Elizabeth Fernandez, S. Duscha, Dominik J. Schwarz, A. G. Polatidis, I. M. Avruch, Michiel A. Brentjens, W. N. Brouw, Roberto Pizzo, P. Labropoulos, Marcus Brüggen, Ralph A. M. J. Wijers, G. Pietka, Gerard H. Kuper, K. M. B. Asad, Martin Bell, Satyendra Thoudam, Jean-Mathias Griessmeier, Richard Fallows, A. Alexov, Emma Chapman, Ron Beck, A. G. de Bruyn, Luitje Koopmans, Vishambhar Pandey, Adam Deller, C. Toribio, F. B. Abdalla, P. Zarka, Matthias Steinmetz, F. Breitling, B. Ciardi, Jason W. T. Hessels, S. Bus, M. Kuniyoshi, R. Vermeulen, Stefan J. Wijnholds, E. de Geus, Sarod Yatawatta, S. Daiboo, Adam Stewart, A. J. van der Horst, R. J. van Weeren, D. McKay-Bukowski, Netherlands Institute for Radio Astronomy (ASTRON), University College of London [London] (UCL), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, University of Pennsylvania [Philadelphia], SRON Netherlands Institute for Space Research (SRON), Max-Planck-Institut für Radioastronomie (MPIFR), University of Southampton, University of Edinburgh, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), Thüringer Landessternwarte Tautenburg (TLS), Radboud university [Nijmegen], Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Jodrell Bank Centre for Astrophysics (JBCA), University of Manchester [Manchester], University of Amsterdam [Amsterdam] (UvA), Ruhr-Universität Bochum [Bochum], Vrije Universiteit Medical Centre (VUMC), Vrije Universiteit Amsterdam [Amsterdam] (VU), University of Oulu, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), School of Physics and Astronomy [Southampton], Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), ANR-09-JCJC-0001,OPALES(2009), Jelić, V., De Bruyn, A.G., Mevius, M., Abdalla, F.B., Asad, K.M.B., Bernardi, G., Brentjens, M.A., Bus, S., Chapman, E., Ciardi, B., Daiboo, S., Fernandez, E.R., Ghosh, A., Harker, G., Jensen, H., Kazemi, S., Koopmans, L.V.E., Labropoulos, P., Martinez-Rubi, O., Mellema, G., Offringa, A.R., Pandey, V.N., Patil, A.H., Thomas, R.M., Vedantham, H.K., Veligatla, V., Yatawatta, S., Zaroubi, S., Alexov, A., Anderson, J., Avruch, I.M., Beck, R., Bell, M.E., Bentum, M.J., Best, P., Bonafede, A., Bregman, J., Breitling, F., Broderick, J., Brouw, W.N., Brüggen, M., Butcher, H.R., Conway, J.E., De Gasperin, F., De Geus, E., Deller, A., Dettmar, R.-J., Duscha, S., Eislöffel, J., Engels, D., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Grießmeier, J., Gunst, A.W., Hamaker, J.P., Hassall, T.E., Haverkorn, M., Heald, G., Hessels, J.W.T., Hoeft, M., Hörandel, J., Horneffer, A., Van Der Horst, A., Iacobelli, M., Juette, E., Karastergiou, A., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Kuper, G., Van Leeuwen, J., Maat, P., Mann, G., McKay-Bukowski, D., McKean, J.P., Munk, H., Nelles, A., Norden, M.J., Paas, H., Pandey-Pommier, M., Pietka, G., Pizzo, R., Polatidis, A.G., Reich, W., Röttgering, H., Rowlinson, A., Scaife, A.M.M., Schwarz, D., Serylak, M., Smirnov, O., Steinmetz, M., Stewart, A., Tagger, M., Tang, Y., Tasse, C., Ter Veen, S., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., Van Weeren, R.J., Wijers, R.A.M.J., Wijnholds, S.J., Wucknitz, O., Zarka, P., Astronomy, Kapteyn Astronomical Institute, University of Pennsylvania, Radboud University [Nijmegen], Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Universiteit Leiden, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), High Energy Astrophys. & Astropart. Phys (API, FNWI), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Jodrell Bank Centre for Astrophysics, Observatoire de Paris - Site de Paris (OP), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-09-JCJC-0001,OPALES,nOn-thermal Processes in gALaxy cluStErs(2009)
- Subjects
Brightness ,Astronomy ,techniques ,Astrophysics ,Cosmology: observation ,01 natural sciences ,EWI-25428 ,law.invention ,law ,polarimetric [techniques] ,dark ages ,Faraday cage ,010303 astronomy & astrophysics ,Physics ,Line-of-sight ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,observations [cosmology] ,interferometric [techniques] ,radio continuum: ISM ,techniques: interferometric ,Brightness temperature ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,IR-93232 ,reionization ,Astrophysics - Instrumentation and Methods for Astrophysics ,techniques: polarimetric ,cosmology: observations ,diffuse radiation ,first stars ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,ISM [radio continuum] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radio telescope ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Reionization ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,METIS-309730 ,LOFAR ,Astronomy and Astrophysic ,Astrophysics - Astrophysics of Galaxies ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Dark ages, reionization, first star ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,polarimetric - Abstract
This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for the extraction of the cosmological 21-cm signal from the Low-Frequency Array - Epoch of Reionization (LOFAR-EoR) data. We use the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. The brightness temperature of the detected Galactic emission is on average 4 K in polarized intensity and covers the range from -10 to +13rad m^-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology, at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to 1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies. The wide frequency range, good angular resolution and good sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of 1-2 rad m^-2 in Faraday depth. The different polarised patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarised foregrounds is a serious complication for Epoch of Reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%., 12 pages, 9 figures, accepted for publication in A&A
- Published
- 2014
- Full Text
- View/download PDF
20. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes
- Author
-
Olaf Wucknitz, J. Kohler, D. D. Mulcahy, Aris Karastergiou, M. Iacobelli, Wilfred Frieswijk, Michael W. Wise, Gianni Bernardi, Philip Best, Gerard H. Kuper, V. I. Kondratiev, M. Pandey-Pommier, Y. Tang, Tim Hassall, Sarod Yatawatta, P. Maat, R. J. van Weeren, Evan Keane, George Heald, Frank Breitling, A. Noutsos, S. Duscha, H. Munk, R. C. Vermeulen, W. N. Brouw, J. Eisloeffel, John McKean, Stefan J. Wijnholds, T. Grit, Heino Falcke, J. Sluman, Roberto Pizzo, C. Tasse, Jean-Mathias Griessmeier, Rob Fender, I. M. Avruch, G. de Bruyn, Carlos Sotomayor-Beltran, Sera Markoff, M. Brueggen, Ralph A. M. J. Wijers, B. Ciardi, E. Juette, S. ter Veen, A. W. Gunst, Chiara Ferrari, M. Kuniyoshi, J. W. Broderick, Giulia Macario, Matthias Hoeft, A. Horneffer, M. Pilia, Michel Tagger, Jason W. T. Hessels, F. de Gasperin, Annalisa Bonafede, Richard Fallows, A. Alexov, Luitje Koopmans, Martin Bell, M. A. Garrett, Rainer Beck, M. Serylak, Michael Kramer, P. Zarka, Huub Roettgering, J. van Leeuwen, James M. Anderson, R. J. Dettmar, Mark J. Bentum, Ben Stappers, A. G. Polatidis, Laura Birzan, Ashish Asgekar, Charlotte Sobey, Emanuela Orrú, Michael R. Bell, A. van Duin, H. Paas, W. Reich, Astronomisches Institut der Ruhr-Universität Bochum, Ruhr-Universität Bochum [Bochum], Max-Planck-Institut für Radioastronomie (MPIFR), University of Amsterdam [Amsterdam] (UvA), Netherlands Institute for Radio Astronomy (ASTRON), SRON Netherlands Institute for Space Research (SRON), Laboratoire de Chimie Physique Moléculaire (LCPM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, University of Edinburgh, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Kapteyn Astronomical Institute [Groningen], University of Groningen [Groningen], Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Thüringer Landessternwarte Tautenburg (TLS), Radboud university [Nijmegen], Institute of Mathematical and Physical Sciences, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Oxford Astrophysics, University of Oxford [Oxford], Centre for Astrophysics and Supercomputing, Swinburne University of Technology [Melbourne], Karlsruhe Institute of Technology (KIT), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, ANR-09-JCJC-0001,OPALES(2009), Astronomy, Kapteyn Astronomical Institute, High Energy Astrophys. & Astropart. Phys (API, FNWI), Harvard University-Smithsonian Institution, Universiteit Leiden, Radboud University [Nijmegen], Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Sotomayor-Beltran, C., Sobey, C., Hessels, J.W.T., De Bruyn, G., Noutsos, A., Alexov, A., Anderson, J., Asgekar, A., Avruch, I.M., Beck, R., Bell, M.E., Bell, M.R., Bentum, M.J., Bernardi, G., Best, P., Birzan, L., Bonafede, A., Breitling, F., Broderick, J., Brouw, W.N., Brüggen, M., Ciardi, B., De Gasperin, F., Dettmar, R.-J., Van Duin, A., Duscha, S., Eislöffel, J., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Grießmeier, J., Grit, T., Gunst, A.W., Hassall, T.E., Heald, G., Hoeft, M., Horneffer, A., Iacobelli, M., Juette, E., Karastergiou, A., Keane, E., Kohler, J., Kramer, M., Kondratiev, V.I., Koopmans, L.V.E., Kuniyoshi, M., Kuper, G., Van Leeuwen, J., Maat, P., MacArio, G., Markoff, S., McKean, J.P., Mulcahy, D.D., Munk, H., Orru, E., Paas, H., Pandey-Pommier, M., Pilia, M., Pizzo, R., Polatidis, A.G., Reich, W., Röttgering, H., Serylak, M., Sluman, J., Stappers, B.W., Tagger, M., Tang, Y., Tasse, C., Ter Veen, S., Vermeulen, R., Van Weeren, R.J., Wijers, R.A.M.J., Wijnholds, S.J., Wise, M.W., Wucknitz, O., Yatawatta, S., and Zarka, P.
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,VLA ,Polarimetry ,FOS: Physical sciences ,IR-89498 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Rotation ,01 natural sciences ,law.invention ,Radio telescope ,PULSAR ROTATION ,symbols.namesake ,MHZ ,Pulsar ,DISPERSION ,law ,0103 physical sciences ,Faraday effect ,DEPOLARIZATION ,Faraday cage ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,EWI-24501 ,polarization ,Astrophysics::Instrumentation and Methods for Astrophysics ,METIS-302716 ,Astronomy and Astrophysics ,GALACTIC MAGNETIC-FIELD ,LOFAR ,Astronomy and Astrophysic ,GALAXY ,techniques: polarimetric ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,symbols ,ARRAY ,Ionosphere ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
International audience; Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.
- Published
- 2013
- Full Text
- View/download PDF
21. Initial deep LOFAR observations of Epoch of Reionization windows: I. The North Celestial Pole
- Author
-
M. A. Garrett, Vibor Jelić, Michel Tagger, B. Ciardi, Aris Karastergiou, Harish Vedantham, Marco Iacobelli, Michael W. Wise, Gianni Bernardi, Garrelt Mellema, F. Breitling, F. B. Abdalla, Panagiotis Labropoulos, H. Paas, R. J. van Weeren, Richard Fallows, Léon V. E. Koopmans, M. Kuniyoshi, Michiel A. Brentjens, W. N. Brouw, R. Nijboer, E. Juette, Emanuela Orru, Olaf Wucknitz, V. Veligatla, Gottfried Mann, Ben Stappers, John McKean, M. Mevius, A. G. Polatidis, J. M. Anderson, A. Alexov, Gerard H. Kuper, J. D. Mol, S. ter Veen, Annalisa Bonafede, R. Pizzo, A. W. Gunst, T. E. Hassall, M. Pandey-Pommier, Ph. Zarka, Joop Schaye, Geraint Harker, Michael Kramer, J. Sluman, P. Maat, Jason W. T. Hessels, M. J. Norden, H. J. A. Röttgering, A. R. Offringa, Philip Best, V. I. Kondratiev, Heino Falcke, V. N. Pandey, Chiara Ferrari, J. Noordam, S. Duscha, E. de Geus, John Conway, R. Vermeulen, Sarod Yatawatta, S. Kazemi, Matthias Hoeft, S. Daiboo, F. Batejat, Michael R. Bell, Wolfgang Reich, Saleem Zaroubi, J. M. Griessmeier, R. H. van de Brink, Rajat M. Thomas, Cyril Tasse, Y. Tang, J. W. Broderick, Emma Chapman, Mark J. Bentum, Stefan J. Wijnholds, J. van Leeuwen, Joel N. Bregman, H. Munk, Marcus Brüggen, F. de Gasperin, W. Frieswijk, I. M. Avruch, Oleg Smirnov, Matthias Steinmetz, Martin Bell, O. Martinez Rubi, de Antonius Bruyn, Netherlands Institute for Radio Astronomy (ASTRON), Kapteyn Astronomical Institute [Groningen], University of Groningen [Groningen], Department of process and energy, Delft University of Technology (TU Delft), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Stockholm Observatory Department of Astronomy, Stockholm University, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), University of Edinburgh, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), Onsala Space Observatory, Dept. of Radio and Space Science, Chalmers University of Technology, Chalmers University of Technology [Göteborg], Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Medstar Research Institute, Max-Planck-Institut für Radioastronomie (MPIFR), Radboud university [Nijmegen], Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Thüringer Landessternwarte Tautenburg (TLS), Ruhr-Universität Bochum [Bochum], Oxford Astrophysics, University of Oxford [Oxford], University of Amsterdam [Amsterdam] (UvA), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Center for Information Technology CIT, Université de Groningen, Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de la Recherche Agronomique (INRA), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Yatawatta, S., De Bruyn, A.G., Brentjens, M.A., Labropoulos, P., Pandey, V.N., Kazemi, S., Zaroubi, S., Koopmans, L.V.E., Offringa, A.R., Jelić, V., Martinez Rubi, O., Veligatla, V., Wijnholds, S.J., Brouw, W.N., Bernardi, G., Ciardi, B., Daiboo, S., Harker, G., Mellema, G., Schaye, J., Thomas, R., Vedantham, H., Chapman, E., Abdalla, F.B., Alexov, A., Anderson, J., Avruch, I.M., Batejat, F., Bell, M.E., Bell, M.R., Bentum, M., Best, P., Bonafede, A., Bregman, J., Breitling, F., Van De Brink, R.H., Broderick, J.W., Brüggen, M., Conway, J., De Gasperin, F., De Geus, E., Duscha, S., Falcke, H., Fallows, R.A., Ferrari, C., Frieswijk, W., Garrett, M.A., Griessmeier, J.M., Gunst, A.W., Hassall, T.E., Hessels, J.W.T., Hoeft, M., Iacobelli, M., Juette, E., Karastergiou, A., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Kuper, G., Van Leeuwen, J., Maat, P., Mann, G., McKean, J.P., Mevius, M., Mol, J.D., Munk, H., Nijboer, R., Noordam, J.E., Norden, M.J., Orru, E., Paas, H., Pandey-Pommier, M., Pizzo, R., Polatidis, A.G., Reich, W., Röttgering, H.J.A., Sluman, J., Smirnov, O., Stappers, B., Steinmetz, M., Tagger, M., Tang, Y., Tasse, C., Ter Veen, S., Vermeulen, R., Van Weeren, R.J., Wise, M., Wucknitz, O., Zarka, P., High Energy Astrophys. & Astropart. Phys (API, FNWI), Harvard University-Smithsonian Institution, Universiteit Leiden, Radboud University [Nijmegen], Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), and University of Oxford
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astronomy ,first stars ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Instrumentation: interferometer ,METIS-302720 ,Celestial pole ,first stars -instrumentation: interferometers -techniques: interferometric -methods: data analysis ,0103 physical sciences ,dark ages ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Reionization ,Physics ,reionization ,instrumentation: interferometers ,techniques: interferometric ,methods: data analysis ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,IR-89500 ,Instrumentation: interferometers – Techniques: interferometric – Cosmology: observations ,Astrophysics::Instrumentation and Methods for Astrophysics ,EWI-24509 ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Redshift ,Galaxy ,diffuse radiation ,Dark ages, reionization, first star ,Orders of magnitude (time) ,Space and Planetary Science ,Instrumentation: interferometers ,Techniques: interferometric ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Ionosphere ,Astrophysics - Instrumentation and Methods for Astrophysics ,Noise (radio) ,Methods: data analysi ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The aim of the LOFAR Epoch of Reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. One of the prospective observing windows for the LOFAR EoR project will be centered at the North Celestial Pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. With about 3 nights, of 6 hours each, effective integration we have achieved a noise level of about 100 microJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 microJy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP., 19 pages, 24 figures. Draft version with low resolution images. Accepted on 08/01/2013 Astronomy & Astrophysics. Abstract abridged. Version with high resolution images: http://www.astro.rug.nl/~yatawatta/ncp_eor.pdf
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.