23 results on '"Shupe, D."'
Search Results
2. Mid-infrared spectroscopy of infrared-luminous galaxies at z similar to 0.5-3
- Author
-
Hernán-Caballero, A, Pérez-Fournon, I, Hatziminaoglou, E, Afonso-Luis, A, Rowan-Robinson, M, Rigopoulou, D, Farrah, D, Lonsdale, C J, Babbedge, T, Clements, D, Serjeant, S, Pozzi, F, Vaccari, M, Montenegro-Montes, F M, Valtchanov, I, González-Solares, E, Oliver, S, Shupe, D, Gruppioni, C, Vila-Vilaró, B, Lari, C, and La Franca, F
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present results on low-resolution mid-infrared (MIR) spectra of 70 IR-luminous galaxies obtained with the infrared spectrograph (IRS) onboard Spitzer. We selected sources from the European Large Area Infrared Survey with S 15 > 0.8 mJy and photometric or spectroscopic z > 1. About half of the samples are quasi-stellar objects (QSOs) in the optical, while the remaining sources are galaxies, comprising both obscured active galactic nuclei (AGN) and starbursts. Redshifts were obtained from optical spectroscopy, photometric redshifts and the IRS spectra. The later turn out to be reliable for obscured and/or star-forming sources, thus becoming an ideal complement to optical spectroscopy for redshift estimation. We estimate monochromatic luminosities at several rest-frame wavelengths, equivalent widths and luminosities for the polycyclic aromatic hydrocarbon (PAH) features, and strength of the silicate feature in individual spectra. We also estimate integrated 8-1000 μm IR luminosities via spectral energy distribution fitting to MIR and far-IR (FIR) photometry from the Spitzer Wide-Area Infrared Extragalactic survey and the MIR spectrum. Based on these measurements, we classify the spectra using well-known IR diagnostics, as well as a new one that we propose, into three types of source: those dominated by an unobscured AGN, mostly corresponding to optical quasars (QSOs), those dominated by an obscured AGN and starburst-dominated sources. Starbursts concentrate at z ∼ 0.6-1.0 favoured by the shift of the 7.7-μm PAH band into the selection 15-μm band, while AGN spread over the 0.5 < z < 3.1 range. Star formation rates (SFR) are estimated for individual sources from the luminosity of the PAH features. An estimate of the average PAH luminosity in QSOs and obscured AGN is obtained from the composite spectrum of all sources with reliable redshifts. The estimated mean SFR in the QSOs is 50-100 M ⊙ yr -1, but the implied FIR luminosity is 3-10 times lower than that obtained from stacking analysis of the FIR photometry, suggesting destruction of the PAH carriers by energetic photons from the AGN. The SFR estimated in obscured AGN is two to three times higher than in QSOs of similar MIR luminosity. This discrepancy might not be due to luminosity effects or selection bias alone, but could instead indicate a connection between obscuration and star formation. However, the observed correlation between silicate absorption and the slope of the NIR to MIR spectrum is compatible with the obscuration of the AGN emission in these sources being produced in a dust torus. © 2009 RAS.
- Published
- 2016
- Full Text
- View/download PDF
3. VVDS-SWIRE. Clustering evolution from a spectroscopic sample of galaxies with redshift 0.2 < z < 2.1 selected from Spitzer IRAC 3.6 μ m and 4.5 μ m photometry
- Author
-
de La Torre S., Le Fèvre O., Arnouts S., Guzzo L., Farrah D., Iovino A., Lonsdale C. J., Meneux B., Oliver S. J., Pollo A., Waddington I., Bottini D., Fang F., Garilli B., Le Brun V., Maccagni D., Picat J. P., Scaramella R., Scodeggio M., Shupe D., Surace J., Tresse L., Vettolani G., Zanichelli A., Adami C., Bardelli S., Bolzonella M., Cappi A., Charlot S., Ciliegi P., Contini T., Foucaud S., Franzetti P., Gavignaud I., Ilbert O., Lamareille F., McCracken H. J., Marinoni C., Mazure A., Merighi R., Paltani S., Pellò R., Pozzetti L., Radovich M., Zamorani G., Zucca E., Bondi M., Brinchmann J., Mellier Y., Merluzzi P., Temporin S., Vergani D., Walcher C. J., MARANO, BRUNO, BONGIORNO, ANGELA, CUCCIATI, OLGA, de La Torre S., Le Fèvre O., Arnouts S., Guzzo L., Farrah D., Iovino A., Lonsdale C. J., Meneux B., Oliver S. J., Pollo A., Waddington I., Bottini D., Fang F., Garilli B., Le Brun V., Maccagni D., Picat J. P., Scaramella R., Scodeggio M., Shupe D., Surace J., Tresse L., Vettolani G., Zanichelli A., Adami C., Bardelli S., Bolzonella M., Cappi A., Charlot S., Ciliegi P., Contini T., Foucaud S., Franzetti P., Gavignaud I., Ilbert O., Lamareille F., McCracken H. J., Marano B., Marinoni C., Mazure A., Merighi R., Paltani S., Pellò R., Pozzetti L., Radovich M., Zamorani G., Zucca E., Bondi M., Bongiorno A., Brinchmann J., Cucciati O., Mellier Y., Merluzzi P., Temporin S., Vergani D., and Walcher C. J.
- Subjects
Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Aims.By combining data from the VIMOS VLT Deep Survey (VVDS) with the Spitzer Wide-area InfraRed Extragalactic survey (SWIRE) we have built the currently largest spectroscopic sample of high redshift galaxies selected in the rest-frame near-infrared. We have obtained 2040 spectroscopic redshifts of galaxies with (m3.6)_AB < 21.5 at 3.6 μ m and 1255 spectroscopic redshifts of galaxies with (m4.5)_AB < 21. These allow us to investigate the clustering evolution of galaxies selected via their rest-frame near-infrared luminosity in the redshift range 0.2 < z < 2.1. Methods: We use the projected two-point correlation function w_p(r_p) to study the three dimensional clustering properties of galaxies detected at 3.6 μ m and 4.5 μ m with the InfraRed Array Camera (IRAC) in the SWIRE survey with measured spectroscopic redshifts from the first epoch VVDS. We compare these properties to those of a larger sample of 16672 SWIRE galaxies for which we have accurate photometric redshifts in the same field. Results: We find that in the 3.6 μ m and 4.5 μ m flux limited samples the apparent correlation length does not change from redshift ~2 to the present. The measured correlation lengths have a mean value of r0 ≃ 3.9±0.5 h-1 Mpc for the galaxies selected at 3.6 μ m and a mean value of r0 ≃ 4.4±0.5 h-1 Mpc for the galaxies selected at 4.5 μ m across the whole redshift range explored. These values are larger than those typicaly found for I-band selected galaxies at I_AB < 24 for which r0 varies from 2.69 h-1 Mpc to 3.63 h-1 Mpc between z = 0.5 to z = 2.1. We find that the difference in correlation length between I-band and 3.6-4.5 μm selected samples decreases with increasing redshift becoming comparable at z ≃ 1.5. We interpret this as evidence that galaxies with older stellar populations and galaxies actively forming stars reside in comparably over-dense environments at epochs earlier than z ≃ 1.5 supporting the recently reported flattening of the color-density relation at high redshift. The increasing difference in correlation length with cosmic time observed between rest-frame UV-optical and near-infrared selected samples could then be an indication that star formation is gradually shifting to lower density regions with decreasing redshift while the older passively evolving galaxies remain in the most over-dense peaks.
- Published
- 2007
4. The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts
- Author
-
Roseboom, I. G., Ivison, R. J., Greve, T. R., Amblard, A., Arumugam, V., Auld, R., Aussel, H., Bethermin, M., Blain, A., Bock, J., Boselli, A., Brisbin, D., Buat, V., Burgarella, D., Castro-Rodríguez, N., Cava, A., Chanial, P., Chapin, E., Chapman, S., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, S., Elbaz, D., Farrah, D., Franceschini, A., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Lagache, G., Levenson, L., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Marsden, G., Morrison, G., Mortier, A. M. J., Nguyen, H. T., O’Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Rawlings, J. I., Raymond, G., Rigopoulou, D., Rizzo, D., Rodighiero, G., Rowan-Robinson, M., Schulz, B., Scott, Douglas, Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Viero, M. P., Vigroux, L., Wardlow, J., Wang, L., Wright, G., Xu, C. K., Zemcov, M., Department of Physics and Astronomy [Brighton] (DPA), University of Sussex, Royal Observatory Edinburgh (ROE), University of Edinburgh, UK Astronomy Technology Centre (UK ATC), Science and Technology Facilities Council (STFC), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Department of Physics and Astronomy [Irvine], University of California [Irvine] (UCI), University of California-University of California, School of Physics and Astronomy [Cardiff], Cardiff University, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), CHANG, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Department of Astronomy [Ithaca], Cornell University, Instituto de Astrofisica de Canarias (IAC), Departamento de Astrofísica [La laguna], Universidad de La Laguna [Tenerife - SP] (ULL), University of British Columbia (UBC), Institute of Astronomy [Cambridge], University of Cambridge [UK] (CAM), Astrophysics Group, Blackett Laboratory, Imperial College London-Imperial College London, Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Herschel Science Center [Madrid], European Space Astronomy Centre (ESAC), European Space Agency (ESA)-European Space Agency (ESA), NASA Goddard Space Flight Center (GSFC), Dipartimento di Astronomia [Padova], Universita degli Studi di Padova, Department of Astrophysical and Planetary Sciences [Boulder], European Southern Observatory (ESO), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Infrared Processing and Analysis Center (IPAC), School of Physics and Astronomy [Manchester], University of Manchester [Manchester], Visual servoing in robotics, computer vision, and augmented reality (Lagadic), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Canada-France-Hawaii Telescope Corporation (CFHT), National Research Council of Canada (NRC)-Centre National de la Recherche Scientifique (CNRS)-University of Hawai'i [Honolulu] (UH), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), University of Lethbridge, Department of Physics [Oxford], University of Oxford [Oxford], Centre for Astrophysics Research [Hatfield], University of Hertfordshire [Hatfield] (UH), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), CHANG (CHANG), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Cornell University [New York], CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Smithsonian Institution-Harvard University [Cambridge], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Università degli Studi di Padova = University of Padua (Unipd), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Harvard University-Smithsonian Institution, and California Institute of Technology (CALTECH)-NASA
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 {\mu}m by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth {\tau} = ({\nu}/{\nu}0)^{\beta} where {\beta} = +1.8 and {\nu}0 = c/100 {\mu}m. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |z|/(1+z) = 0.16 (< |z| >= 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |z|/(1 + z) = 0.15 (< |z| >= 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z > 3 when compared to ~ 850 {\mu}m selected samples., Comment: 17 pages, 7 figures, accepted for publication in MNRAS
- Published
- 2012
- Full Text
- View/download PDF
5. Discovery of a Multiply Lensed Submillimeter Galaxy in Early HerMES Herschel/SPIRE Data
- Author
-
Conley, A., Cooray, A., Vieira, J. D., Blain, A., Bock, J. J., Bradford, C. M., Bridge, C., Carpenter, J. M., Djorgovski, S. G., Dowell, C. D., Fu, H., Levenson, L., Mahabal, A., Murphy, E., Nguyen, H. T., Riechers, D., Schulz, B., Shupe, D. L., Viero, M. P., Xu, C. K., Zemcov, M., and Zmuidzinas, J.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We report the discovery of a bright (f(250 μm)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 μm Submillimeter Array observations resolve at least four images with a large separation of ~9". A high-resolution adaptive optics K_p image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of μ ~ 11 ± 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 ± 3 K. We derive a lensing-corrected total IR luminosity of (1.43 ± 0.09) × 10^(13) L_☉, implying a star formation rate of ~2500 M_☉ yr^(–1). However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected.
- Published
- 2011
6. Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey
- Author
-
ROWAN ROBINSON, M, Roseboom, I. G., Vaccari, M, Amblard, A, Arumugam, V, Auld, R, Aussel, H, Babbedge, T, Blain, A, Bock, J, Boselli, A, Brisbin, D, Buat, V, Burgarella, D, CASTRO RODRIGUEZ, N, Cava, A, Chanial, P, Clements, D. L., Conley, A, Conversi, L, Cooray, A, Dowell, C. D., Dwek, E, Dye, S, Eales, S, Elbaz, D, Farrah, D, Fox, M, Franceschini, Alberto, Gear, W, Glenn, J, Gonzãlez, SOLARES E. A., Griffin, M, Halpern, M, Hatziminaoglou, E, Huang, J, Ibar, E, Isaak, K, Ivison, R. J., Lagache, G, Levenson, L, Lu, N, Madden, S, Maffei, B, Mainetti, Gabriele, Marchetti, L, Mortier, A. M. J., Nguyen, H. T., O'Halloran, B, Oliver, S. J., Omont, A, Page, M. J., Panuzzo, P, Papageorgiou, A, Patel, H, Pearson, C. P., Perez, FOURNON I., Pohlen, M, Rawlings, J. I., Raymond, G, Rigopoulou, D, Rizzo, D, Schulz, B, Scott, Douglas, Seymour, N, Shupe, D. L., Smith, A. J., Stevens, J. A., Symeonidis, M, Trichas, M, Tugwell, K. E., Valtchanov, I, Vigroux, L, Wang, L, Ward, R, Wright, G, C. K., Xu, and Zemcov, M.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,galaxies: evolution, galaxies: starburst, galaxies: star formation, cosmology: observations, infrared: galaxies ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies ( 56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent ('cirrus') models with colder (10-20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses. © 2010 The Authors. Journal compilation © 2010 RAS.
- Published
- 2010
7. The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift
- Author
-
Brisbin, D., Harwit, M., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., Blain, A., Bock, J., Boselli, A., Buat, V., Castro-Rodriguez, N., Cava, A., Chanial, P., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dowell, C. D., Dwek, E., Eales, S., Elbaz, D., Fox, M., Franceschini, A., Gear, W., Glenn, J., Griffin, M., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Lagache, Guilaine, Levenson, L., Lonsdale, Carol J., Lu, N., Madden, S., Maffei, B., Mainetti, G., Marchetti, L., Morrison, G. E., Nguyen, H. T., O'Halloran, B., Oliver, S. J., Omont, A., Owen, F. N., Pannella, M., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Pohlen, M., Rizzo, D., Roseboom, I. G., Rowan-Robinson, M., Sanchez Portal, M., Schulz, B., Seymour, N., Shupe, D. L., Smith, A. J., Stevens, J. A., Strazzullo, V., Symeonidis, M., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vigroux, L., Wang, L., Ward, R., Wright, Gavin, Xu, C. K., Zemcov, M., Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Brisbin, D, Harwit, M, Altieri, B, Amblard, A, Arumugam, V, Aussel, H, Babbedge, T, Blain, A, Bock, J, Boselli, A, Buat, V, Castro-Rodriguez, N, Cava, A, Chanial, P, Clements, Dl, Conley, A, Conversi, L, Cooray, A, Dowell, Cd, Dwek, E, Eales, S, Elbaz, D, Fox, M, Franceschini, A, Gear, W, Glenn, J, Griffin, M, Halpern, M, Hatziminaoglou, E, Ibar, E, Isaak, K, Ivison, Rj, Lagache, G, Levenson, L, Lonsdale, Cj, Lu, N, Madden, S, Maffei, B, Mainetti, G, Marchetti, L, Morrison, Ge, Nguyen, Ht, O'Halloran, B, Oliver, Sj, Omont, A, Owen, Fn, Pannella, M, Panuzzo, P, Papageorgiou, A, Pearson, Cp, Perez-Fournon, I, Pohlen, M, Rizzo, D, Roseboom, Ig, Rowan-Robinson, M, Portal, M, Schulz, B, Seymour, N, Shupe, Dl, Smith, Aj, Stevens, Ja, Strazzullo, V, Symeonidis, M, Trichas, M, Tugwell, Ke, Vaccari, M, Valtchanov, I, Vigroux, L, Wang, L, Ward, R, Wright, G, Xu, Ck, and Zemcov, M
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Spectral and Photometric Imaging Receiver (SPIRE) on Herschel has been carrying out deep extragalactic surveys, one of whose aims is to establish spectral energy distributions (SED)s of individual galaxies spanning the infrared/submillimeter (IR/SMM) wavelength region. We report observations of the (IR/SMM) emission from the Lockman North field (LN) and Great Observatories Origins Deep Survey field North (GOODS-N). Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighboring galaxies, we present sets of galaxies in each field especially free of blending at 250, 350, and 500 microns. We identify the cumulative emission of these galaxies and the fraction of the far infrared cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z ~< 3 and a novel relationship between infrared and visible emission that shows a dependence on luminosity and redshift., 9 pages, 3 large tables, 2 tables in text, 5 figures Accepted for publication in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
8. Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey
- Author
-
Rowan-Robinson, M., Blain, A., Bock, J. J., Cooray, A., Dowell, C. D., Levenson, L., Lu, N. Y., Nguyen, H. T., Schulz, B., Shupe, D. L., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (~56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent (‘cirrus’) models with colder (10–20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5–24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5–70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses.
- Published
- 2010
9. In-flight calibration of the Herschel-SPIRE instrument
- Author
-
Swinyard, B. M., Levenson, L., Lu, N., Schulz, B., Schwartz, A., Shupe, D., Xu, C. K., and Zhang, L.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
- Published
- 2010
10. Evolution of dust temperature of galaxies through cosmic time as seen by Herschel
- Author
-
Cava, A., Cepa, J., Chanial, P., Chapin, E., Chary, R. -R., Cimatti, Alessandro, Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dannerbauer, H., Dickinson, M., Dominguez, H., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, S., Farrah, D., Schreiber, N. Foerster, Fox, M., Franceschini, A., Gear, W., Genzel, R., Glenn, J., Griffin, M., Gruppioni, C., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Jeong, W. -S., Lagache, Guilaine, Le Borgne, Damien, Le Floc'H, E., Lee, H. M., Lee, J. C., Lee, M. G., Levenson, L., Lu, N., Lutz, D., Madden, S., Maffei, B., Magnelli, B., Mainetti, G., Maiolino, R., Marchetti, L., Mortier, A. M. J., Nguyen, H. T., Nordon, R., O'Halloran, B., Okumura, K., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Perez Garcia, A. M., Poglitsch, A., Pohlen, M., Popesso, P., Pozzi, F., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Saintonge, A., Sanchez Portal, M., Santini, P., Sauvage, M., Schulz, B., Scott, D., Seymour, N., Shao, L., Shupe, D. L., Smith, A. J., Stevens, J. A., Sturm, E., Tacconi, L., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Vigroux, L., Wang, L., Ward, R., Wright, Gavin, Xu, C. K., Zemcov, M., Hwang, H. S., Elbaz, D., Magdis, G., Daddi, Emanuele, Symeonidis, M., Altieri, B., Amblard, A., Andreani, P., Arumugam, V., Auld, R., Aussel, H., Babbedge, T., Berta, S., Blain, A., Bock, J., Bongiovanni, A., Boselli, A., Buat, V., Burgarella, D., Castro-Rodriguez, N., H.S. Hwang, D. Elbaz, G. E. Magdi, E. Daddi, M. Symeonidi, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, E. Chapin, R.-R. Chary, A. Cimatti, D.L. Clement, A. Conley, L. Conversi, A. Cooray, H. Dannerbauer, M. Dickinson, H. Dominguez, C.D. Dowell, J.S. Dunlop, E. Dwek, S. Eale, D. Farrah, N. Forster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R.J. Ivison, W.-S. Jeong, G. Lagache, D. Le Borgne, E. Le Floc'h, H.M. Lee, J.C. Lee, M.G. Lee, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, B. Magnelli, G. Mainetti, R. Maiolino, L. Marchetti, A.M.J. Mortier, H.T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S.J. Oliver, A. Omont, M.J. Page, P. Panuzzo, A. Papageorgiou, C.P. Pearson, I. Perez-Fournon, A.M. Perez Garcia, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J.I. Rawling, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I.G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, Douglas Scott, N. Seymour, L. Shao, D.L. Shupe, A.J. Smith, J.A. Steven, E. Sturm, L. Tacconi, M. Tricha, K.E. Tugwell, M. Vaccari, I. Valtchanov, J.D. Vieira, L. Vigroux, L.Wang, R. Ward, G. Wright, C.K. Xu, M. Zemcov, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the dust properties of galaxies in the redshift range 0.10.5 with L_IR>5x10^{10} L_\odot, appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities; and the dispersion in T_dust for high-z galaxies increases with L_IR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the L_IR-T_dust relation can bridge the gap between local star-forming galaxies and high-z submillimeter galaxies (SMGs). We also find that three SMGs with very low T_dust (, Comment: 9 pages, 6 figures, To appear in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
11. In-flight calibration of the Herschel-SPIRE instrument [Letter]
- Author
-
Swinyard, B. M., Ade, Peter A. R., Baluteau, J.-P., Aussel, H., Barlow, M. J., Bendo, G. J., Benielli, D., Bock, J., Brisbin, D., Conley, A., Conversi, L., Dowell, A., Dowell, D., Ferlet, M., Fulton, T., Glenn, J., Glauser, A., Griffin, D., Griffin, Matthew Joseph, Guest, S., Imhof, P., Isaak, Kate Gudrun, Jones, S., King, K., Leeks, S., Levenson, L., Lim, T. L., Lu, N., Makiwa, G., Naylor, D., Nguyen, H., Oliver, S., Panuzzo, P., Papageorgiou, Andreas, Pearson, C., Pohlen, Michael, Polehampton, E., Pouliquen, D., Rigopoulou, D., Ronayette, S., Roussel, H., Rykala, Adam John, Savini, G., Schulz, B., Schwartz, A., Shupe, D., Sibthorpe, B., Sidher, S., Smith, A. J., Spencer, Locke, Trichas, M., Triou, H., Valtchanov, I., Wesson, R., Woodcraft, A., Xu, C. K., Zemcov, M., and Zhang, L.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QB - Abstract
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
- Published
- 2010
12. Herschel unveils a puzzling uniformity of distant dusty galaxies [Letter]
- Author
-
Elbaz, D., Hwang, H. S., Magnelli, B., Daddi, E., Aussel, H., Altieri, B., Amblard, A., Andreani, P., Arumugam, V., Auld, Robbie Richard, Babbedge, T., Berta, S., Blain, A., Bock, J., Bongiovanni, A., Boselli, A., Buat, V., Burgarella, D., Castro-Rodriguez, N., Cava, A., Cepa, J., Chanial, P., Chary, R.-R., Cimatti, A., Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dickinson, M., Dominguez, H., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, Stephen Anthony, Farrah, D., Förster Schreiber, N., Fox, M., Franceschini, A., Gear, Walter Kieran, Genzel, R., Glenn, J., Griffin, Matthew Joseph, Gruppioni, C., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, Kate Gudrun, Ivison, R. J., Lagache, G., Le Borgne, D., Le Floc'h, E., Levenson, L., Lu, N., Lutz, D., Madden, S., Maffei, B., Magdis, G., Mainetti, G., Maiolino, R., Marchetti, L., Mortier, A. M. J., Nguyen, H. T., Nordon, R., O'Halloran, B., Okumura, K., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, Andreas, Pearson, C. P., Perez Fournon, I., Pérez García, A. M., Poglitsch, A., Pohlen, Michael, Popesso, P., Pozzi, F., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Saintonge, A., Sanchez Portal, M., Santini, P., Sauvage, M., Schulz, B., Scott, D., Seymour, N., Shao, L., Shupe, D. L., Smith, A. J., Stevens, J. A., Sturm, E., Symeonidis, M., Tacconi, L., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J., Vigroux, L., Wang, L., Ward, R., Wright, G., Xu, C. K., and Zemcov, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,QB - Abstract
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of star-formation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 μm to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 μm prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e.g. at 24 μm, to identify “isolated” galaxies whose flux is not boosted by bright neighbors. Below z ~ 1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to z ~ 0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, LIR ≥ 1012 ). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 μm, 250 μm or 350 μm bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ~150 μm (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, LIR ≥ 1011 ) around z ~ 1 is mildly colder by 10–15% than their local analogs and up to 20% for ULIRGs at z ~ 1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of β = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies.
- Published
- 2010
13. Properties of dusty tori in AGN: I. The Case of SWIRE/SDSS Quasars
- Author
-
Hatziminaoglou, E., Fritz, J., Franceschini, A., Afonso-Luis, A., Hernan-Caballero, A., Perez-Fournon, I., Serjeant, S., Lonsdale, C., Oliver, S., Rowan-Robinson, M., Shupe, D., Smith, H. E., and Surace, J.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We derive the properties of dusty tori in Active Galactic Nuclei (AGN) from the comparison of observed Spectral Energy Distributions (SEDs) of SDSS quasars and a precomputed grid of torus models. The observed SEDs comprise SDSS photometry, 2MASS J, H, and K data, whenever available and mid-Infrared (MIR) data from the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. The adopted model is that of Fritz et al., 2006. The fit is performed by standard chi^2 minimisation, the model however can be multi-component comprising a stellar and a starburst components, whenever necessary. Models with low equatorial optical depth, tau_9.7, were allowed as well as ``traditional'' models with tau_9.7 > 1.0, corresponding to A_V > 22 and the results were compared. Fits using high optical depth tori models only produced dust more compactly distributed than in the configuration where all tau_9.7 models were permitted. Tori with decreasing dust density with the distance from the centre were favoured while there was no clear preference for models with or without angular variation of the dust density. The computed outer radii of the tori are of some tens of parsecs large but can reach, in a few cases, a few hundreds of parsecs. The mass of dust, M_Dust, and infrared luminosity, L_IR, integrated in the wavelength range between 1 and 1000 micron, do not show significant variations with redshift, once the observational biases are taken into account. Objects with 70 micron detections, representing 25% of the sample, are studied separately and the starburst contribution (whenever present) to the IR luminosity can reach, in the most extreme but very few cases, 80%., Full length tables 1 & 2 were omitted from the on-line issue, they can be directly retrieved from the CDS ftp site: http://cdsarc.u-strasbg.fr/viz-bin/ftp-index?J/MNRAS/386/1252
- Published
- 2008
- Full Text
- View/download PDF
14. Distant ULIRGs in the SWIRE Survey
- Author
-
Lonsdale, Carol J., Polletta, M., Farrah, D., Siana, B., Gonzalez-Solares, E., Smith, H. E., Shupe, D., Surace, J., Fang, F., Afonso-Luis, A., Berta, S., and Rowan-Robinson, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Covering ~49 square degrees in 6 separate fields, the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Legacy survey has the largest area among Spitzer’s “wedding cake” suite of extragalactic surveys. SWIRE is thus optimized for studies of large scale structure, population studies requiring excellent statistics, and searches for rare objects. We discuss the search for high redshift ultraluminous infrared galaxies (ULIRGs) with SWIRE. We have selected complete samples of F_(24μm) > 200 μJy, optically faint, candidate high redshift (z>1) ULIRGs, based on their mid-infrared spectral energy distributions (SEDs). These can be broadly categorized as star formation (SF)-dominated, based on the presence of a clear stellar peak at rest frame 1.6μm redshifted into the IRAC bands, or AGN-dominated if the SED rises featureless into the mid-infrared. AGN-dominated galaxies strongly dominate at the brightest 24μm fluxes, while SF-dominated objects rise rapidly in frequency as F_(24) drops, dominating the sample below 0.5 mJy. We derive photometric redshifts and luminosities for SFdominated objects sampling the z~1.2-3 range. Luminosity functions are being derived and compared with submm-selected samples at similar redshifts. The clustering, millimeter and IR spectral properties of the samples have also been investigated.
- Published
- 2008
15. VVDS-SWIRE: Clustering evolution from a spectroscopic sample of galaxies with redshift 0.2<z<2.1 selected from Spitzer IRAC 3.6 micron and 4.5 micron photometry
- Author
-
de la Torre, S., Fevre, O. Le, Arnouts, S., Guzzo, L., Farrah, D., Iovino, A., Lonsdale, C. J., Meneux, B., Oliver, S. J., Pollo, A., Waddington, I., Bottini, D., Fang, F., Garilli, B., Brun, V. Le, Maccagni, D., Picat, J. P., Scaramella, R., Scodeggio, M., Shupe, D., Surace, J., Tresse, L., Vettolani, G., Zanichelli, A., Adami, C., Bardelli, S., Bolzonella, M., Cappi, A., Charlot, S., Ciliegi, P., Contini, T., Foucaud, S., Franzetti, P., Gavignaud, I., Ilbert, O., Lamareille, F., McCracken, H. J., Marano, B., Marinoni, C., Mazure, A., Merighi, R., Paltani, S., Pello, R., Pozzetti, L., Radovich, M., Zamorani, G., Zucca, E., Bondi, M., Bongiorno, A., Brinchmann, J., Cucciati, O., Mellier, Y., Merluzzi, P., Temporin, S., Vergani, D., and Walcher, C. J.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
By combining the VVDS with the SWIRE data, we have built the currently largest spectroscopic sample of galaxies selected in the rest-frame near-infrared. These allow us to investigate, for the first time using spectroscopic redshifts, the clustering evolution of galaxies selected from their rest-frame near-infrared luminosity in the redshift range 0.2, Comment: 11 pages, 8 figures. Accepted for publication in A&A
- Published
- 2007
16. Ultraluminous Infrared Galaxies at 1.5
- Author
-
Farrah, D., Lonsdale, C. J., Borys, C., Fang, F., Waddington, I., Oliver, S., Rowan-Robinson, M., Babbedge, T., Shupe, D., Polletta, M., Smith, H. E., and Surace, J.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present measurements of the spatial clustering of ultraluminous infrared galaxies in two redshift intervals, 1.51. Adopting plausible models for the growth of DM haloes with redshift, then the haloes hosting the 2, ASP conference series. To appear in the conference proceedings for "At the edge of the Universe", Sintra, Portugal, October 2006. Six pages, one figure
- Published
- 2007
- Full Text
- View/download PDF
17. Active Galactic Nucleus and Starburst Classification from Spitzer Mid-Infrared Spectra for High-Redshift SWIRE Sources
- Author
-
Weedman, D., Polletta, M., Lonsdale, C. J., Wilkes, B. J., Siana, B., Houck, J. R., Surace, J., Shupe, D., Farrah, D., and Smith, H. E.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs), which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra that show silicate absorption or are power laws; only one AGN source shows PAH emission features. All nine of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all nine starbursts (1.0 < z < 1.9) and 8 of the 11 AGNs (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts that are most luminous in the mid-infrared is less than that for the most luminous AGNs within the redshift interval 1.7 ≾ z ≾ 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGNs for f_ν(24 μm) ≳ 1.0 mJy.
- Published
- 2006
18. XMM-LSS discovery of a z = 1.22 galaxy cluster
- Author
-
Bremer, M. N., Valtchanov, I., Willis, J., Altieri, B., Andreon, S., Duc, P. A., Fang, F., Jean, C., Lonsdale, C., Pacaud, F., Pierre, M., Shupe, D. L., Surace, J. A., and Waddington, I.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Caltech Library Services - Abstract
We present details of the discovery of XLSS J022303.0−043622, a z= 1.2 cluster of galaxies. This cluster was identified from its X-ray properties and selected as a z > 1 candidate from its optical/near-infrared (IR) characteristics in the XMM Large-Scale Structure Survey (XMM-LSS). It is the most distant system discovered in the survey to date. We present ground-based optical and near-IR observations of the system carried out as part of the XMM-LSS survey. The cluster has a bolometric X-ray luminosity of 1.1 ± 0.7 × 10^44 erg s^−1 , fainter than most other known z > 1 X-ray selected clusters. In the optical it has a remarkably compact core, with at least a dozen galaxies inside a 125 kpc radius circle centred on the X-ray position. Most of the galaxies within the core, and those spectroscopically confirmed to be cluster members, have stellar masses similar to those of massive cluster galaxies at low redshift. They have colours comparable to those of galaxies in other z > 1 clusters, consistent with showing little sign of strong ongoing star formation. The bulk of the star formation within the galaxies appears to have ceased at least 1.5 Gyr before the observed epoch. Our results are consistent with massive cluster galaxies forming at z > 1 and passively evolving thereafter. We also show that the system is straightforwardly identified in Spitzer/IRAC 3.6- and 4.5-μm data obtained by the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey emphasizing the power and utility of joint XMM and Spitzer searches for the most distant clusters.
- Published
- 2006
19. AGN and Starburst Classification from Spitzer Mid-Infrared Spectra for High Redshift SWIRE Sources
- Author
-
Weedman, D., Polletta, M., Lonsdale, C. J., Wilkes, B. J., Siana, B., Houck, J. R., Surace, J., Shupe, D., Farrah, D., and Smith, H. E.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy., 34 pages, 11 figures, ApJ accepted (Dec 2006)
- Published
- 2006
- Full Text
- View/download PDF
20. Spectral energy distributions and luminosities of galaxies and AGN in the SPITZER SWIRE Legacy Survey
- Author
-
Rowan-Robinson, M., Babbedge, T., Surace, J., Shupe, D., Fang, F., Lonsdale, C., Smith, E. E., Polletta, M., Siana, B., Gonzalez-Solares, E., Xu, C., Owen, F., Davoodi, P., Dole, H., Dominghue, D., Efstathiou, A., Farrah, D., Fox, M., Franceschini, A., Frayer, D., Hatzimaoglou, E., Masci, F., Morrison, G., Nandra, K., Oliver, S., Onyett, N., Padgett, D., Perez-Fournon, I., Serjeant, S., Stacey, G., and Vaccari, M.
- Subjects
Astrophysics (astro-ph) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed., Comment: Accepted for publication by Astronomical Journal, 21 figures (5 in colour). Fig 3 available at http://astro.ic.ac.uk/~mrr/
- Published
- 2004
- Full Text
- View/download PDF
21. Optical and infrared diagnostics of SDSS galaxies in the SWIRE survey
- Author
-
T. Evans, Seb Oliver, Giulia Rodighiero, Carol J. Lonsdale, Stefano Berta, Jason Surace, Fan Fang, I. Waddington, Harding E. Smith, Dave Shupe, Michael Rowan-Robinson, A. Afonso-Luis, Francesca Pozzi, Evanthia Hatziminaoglou, Mari Polletta, Duncan Farrah, P. Davoodi, Davoodi P., Pozzi F., Oliver S., Polletta M., Afonso-Luis A., Farrah D., Hatziminaoglou E., Rodighiero G., Berta S., Waddington I., Lonsdale C., Rowan-Robinson M., Shupe D. L., Evans T., Fang F., Smith H. E., and Surace J.
- Subjects
Physics ,Infrared excess ,Infrared ,media_common.quotation_subject ,Astrophysics (astro-ph) ,Extinction (astronomy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy ,Luminosity ,Space and Planetary Science ,Sky ,Bulge ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Emission spectrum ,Caltech Library Services ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We present the rest-frame optical and infrared colours of a complete sample of 1114 z, 14 pages, 8 figures, 4 tables. Accepted for publication in MNRAS
- Published
- 2006
- Full Text
- View/download PDF
22. The contribution of very massive high-redshift SWIRE galaxies to the stellar mass function
- Author
-
Chiara Feruglio, I. Matute, F. La Franca, Carol J. Lonsdale, S. Berta, H. Buttery, Jason Surace, Seb Oliver, Stefano Rubele, J. E. Dias, Alessandro Marconi, Roberto Maiolino, Richard S. Savage, N. Sacchi, Alberto Franceschini, E. Ricciardelli, Maria del Carmen Polletta, David L. Shupe, Andrea Cimatti, Fabrizio Fiore, Enrico V. Held, Berta S., Lonsdale C. J., Polletta M., Savage R. S., Franceschini A., Buttery H., Cimatti A., Dias J., Feruglio C., Fiore F., Held E. V., La Franca F., Maiolino R., Marconi A., Matute I., Oliver S. J., Ricciardelli E., Rubele S., Sacchi N., Shupe D., and Surace J.
- Subjects
Physics ,Number density ,Field (physics) ,Stellar mass ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Function (mathematics) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift ,Galaxy ,Stars ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
(Abridged) We selected high-z massive galaxies at 5.8 microns, in the SWIRE ELAIS-S1 field (1 sq. deg.). Galaxies with the 1.6 microns stellar peak redshifted into the IRAC bands (z~1-3, called ``IR-peakers'') were identified. Stellar masses were derived by means of spectro-photometric fitting and used to compute the stellar mass function (MF) at z=1-2 and 2-3. A parametric fit to the MF was performed, based on a Bayesian formalism, and the stellar mass density of massive galaxies above z=2 determined. We present the first systematic study of the very-massive tail of the galaxy stellar mass function at high redshift. A total of 326 sources were selected. The majority of these galaxies have stellar masses in excess of 1e11 Msun and lie at z>1.5. The availability of mid-IR data turned out to be a valuable tool to constrain the contribution of young stars to galaxy SEDs, and thus their M(stars)/L ratio. The influence of near-IR data and of the chosen stellar library on the SED fitting are also discussed. A significant evolution is found not only for galaxies with M~1e11 Msun, but also in the highest mass bins considered. The comoving number density of these galaxies was lower by more than a factor of 10 at z=2-3, with respect to the local estimate. SWIRE 5.8 micron peakers more massive than 1.6x1e11 Msun provide 30-50% of the total stellar mass density in galaxies at z=2-3., Accepted for publication on A&A. 31 pages. The quality of some figures has been degraded for arXiv purposes
- Published
- 2007
23. Herschel unveils a puzzling uniformity of distant dusty galaxies
- Author
-
D. Elbaz, H. S. Hwang, B. Magnelli, E. Daddi, H. Aussel, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, R.-R. Chary, A. Cimatti, D. L. Clements, A. Conley, L. Conversi, A. Cooray, M. Dickinson, H. Dominguez, C. D. Dowell, J. S. Dunlop, E. Dwek, S. Eales, D. Farrah, N. Förster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R. J. Ivison, G. Lagache, D. Le Borgne, E. Le Floc'h, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, G. Magdis, G. Mainetti, R. Maiolino, L. Marchetti, A. M. J. Mortier, H. T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Perez Fournon, A. M. Pérez García, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J. I. Rawlings, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I. G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, D. Scott, N. Seymour, L. Shao, D. L. Shupe, A. J. Smith, J. A. Stevens, E. Sturm, M. Symeonidis, L. Tacconi, M. Trichas, K. E. Tugwell, M. Vaccari, I. Valtchanov, J. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, M. Zemcov, Observatoire Astronomique de Marseille Provence (OAMP), Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Elbaz D., Hwang H. S., Magnelli B., Daddi E., Aussel H., Altieri B., Amblard A., Andreani P., Arumugam V., Auld R., Babbedge T., Berta S., Blain A., Bock J., Bongiovanni A., Boselli A., Buat V., Burgarella D., Castro-Rodriguez N., Cava A., Cepa J., Chanial P., Chary R.-R., Cimatti A., Clements D. L., Conley A., Conversi L., Cooray A., Dickinson M., Dominguez H., Dowell C. D., Dunlop J. S., Dwek E., Eales S., Farrah D., Förster Schreiber N., Fox M., Franceschini A., Gear W., Genzel R., Glenn J., Griffin M., Gruppioni C., Halpern M., Hatziminaoglou E., Ibar E., Isaak K., Ivison R. J., Lagache G., Le Borgne D., Le Floc'h E., Levenson L., Lu N., Lutz D., Madden S., Maffei B., Magdis G., Mainetti G., Maiolino R., Marchetti L., Mortier A. M. J., Nguyen H. T., Nordon R., O'Halloran B., Okumura K., Oliver S. J., Omont A., Page M. J., Panuzzo P., Papageorgiou A., Pearson C. P., Perez Fournon I., Pérez García A. M., Poglitsch A., Pohlen M., Popesso P., Pozzi F., Rawlings J. I., Rigopoulou D., Riguccini L., Rizzo D., Rodighiero G., Roseboom I. G., Rowan-Robinson M., Saintonge A., Sanchez Portal M., Santini P., Sauvage M., Schulz B., Scott D., Seymour N., Shao L., Shupe D. L., Smith A. J., Stevens J. A., Sturm E., Symeonidis M., Tacconi L., Trichas M., Tugwell K. E., Vaccari M., Valtchanov I., Vieira J., Vigroux L., Wang L., Ward R., Wright G., Xu C. K., and Zemcov M.
- Subjects
Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,infrared: galaxies ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Star formation ,Bolometer ,Astronomy and Astrophysics ,Redshift ,Space observatory ,Galaxy ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved since z~2.5. We use Herschel deep extragalactic surveys from 100 to 500um to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used to identify isolated galaxies whose flux is not boosted by bright neighbors. Below z~1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15dex), therefore similar to z~0 galaxies. This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160um, 250um or 350um bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ~150um (rest-frame) on local templates. We also note that the dust temperature of luminous IR galaxies around z~1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z~1.6. Above z=1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor star formation at very high SFR and in conditions similar to purely star-forming galaxies., Astronomy and Astrophysics, Herschel Special Issue, in press as a Letter; 5 pages
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.