1. Neuropathology of a case of fragile X-associated tremor ataxia syndrome without tremor.
- Author
-
Robinson AC, Bajaj N, Hadjivassiliou M, Minshull J, Mahmood A, and Roncaroli F
- Subjects
- Cognitive Dysfunction genetics, Cognitive Dysfunction pathology, Gray Matter pathology, Humans, Male, Middle Aged, White Matter pathology, Ataxia pathology, Brain pathology, Fragile X Syndrome pathology, Tremor pathology
- Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide expansion from 55 to 200 repeats in the non-coding region of the fragile X mental retardation 1 (FMR1) gene (FMR1). Clinical features include cognitive decline, progressive tremor, and gait ataxia. Neuropathologically, FXTAS shows white matter changes, hippocampal and cerebellar involvement, and p62-positive eosinophilic intranuclear inclusions in astrocytes and neurons. Here, we document the neuropathological findings from a subject who developed cognitive impairment but not tremor and was proved to have genetically confirmed FMR1 premutation. Microscopically, typical p62-postive intranuclear inclusions were present in all the regions examined. Neocortical regions demonstrated gliosis of layer I and mild degree of neuronal loss and atrophy across the other layers. The molecular, Purkinje's cell, and granule cell layers of the cerebellar folia demonstrated mild gliosis, and cerebellar white matter was mildly affected. Aside from p62-positive inclusions, the hippocampus was spared. Arteries in the deep white matter often showed changes consistent with moderate small vessel disease (SVD). Reactive gliosis and severe SVD were features of basal ganglia. Florid reactive astrocytosis was found in the white matter of all regions. Axonal loss and features of axonal damage were found in the white matter of the centrum semiovale. Microglial activation was widespread and evenly seen in both the white matter and grey matter, although the grey matter appeared more severely affected. Pathology associated with Alzheimer's disease was limited. Similarly, no abnormal accumulations of α-synuclein were present. We postulate that age at death and disease duration may play a role in the extent of the pathological features associated with FXTAS. The present results suggest that immunohistochemical staining for p62 can help with the diagnosis of cases with atypical phenotype. In addition, it is likely that the cognitive impairment observed was a result of white matter changes., (© 2020 The Authors. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.)
- Published
- 2020
- Full Text
- View/download PDF