1. De novo stop-loss variants in CLDN11 cause hypomyelinating leukodystrophy.
- Author
-
Riedhammer KM, Stockler S, Ploski R, Wenzel M, Adis-Dutschmann B, Ahting U, Alhaddad B, Blaschek A, Haack TB, Kopajtich R, Lee J, Murcia Pienkowski V, Pollak A, Szymanska K, Tarailo-Graovac M, van der Lee R, van Karnebeek CD, Meitinger T, Krägeloh-Mann I, and Vill K
- Subjects
- Adolescent, Brain diagnostic imaging, Child, Codon, Terminator genetics, Female, Genetic Variation, Humans, Magnetic Resonance Imaging, Male, Pedigree, Anodontia genetics, Anodontia pathology, Ataxia genetics, Ataxia pathology, Brain pathology, Claudins genetics, Hypogonadism genetics, Hypogonadism pathology, Leukoencephalopathies genetics, Leukoencephalopathies pathology
- Abstract
Claudin-11, a tight junction protein, is indispensable in the formation of the radial component of myelin. Here, we report de novo stop-loss variants in the gene encoding claudin-11, CLDN11, in three unrelated individuals presenting with an early-onset spastic movement disorder, expressive speech disorder and eye abnormalities including hypermetropia. Brain MRI showed a myelin deficit with a discrepancy between T1-weighted and T2-weighted images and some progress in myelination especially involving the central and peripheral white matter. Exome sequencing identified heterozygous stop-loss variants c.622T>C, p.(*208Glnext*39) in two individuals and c.622T>G, p.(*208Gluext*39) in one individual, all occurring de novo. At the RNA level, the variant c.622T>C did not lead to a loss of expression in fibroblasts, indicating this transcript is not subject to nonsense-mediated decay and most likely translated into an extended protein. Extended claudin-11 is predicted to form an alpha helix not incorporated into the cytoplasmic membrane, possibly perturbing its interaction with intracellular proteins. Our observations suggest that stop-loss variants in CLDN11 expand the genetically heterogeneous spectrum of hypomyelinating leukodystrophies., (© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF