17 results on '"Wallington TJ"'
Search Results
2. Atmospheric oxidation of polyfluorinated amides: historical source of perfluorinated carboxylic acids to the environment.
- Author
-
Jackson DA, Wallington TJ, and Mabury SA
- Subjects
- Chromatography, Liquid, Gas Chromatography-Mass Spectrometry, Kinetics, Oxidation-Reduction, Spectroscopy, Fourier Transform Infrared, Tandem Mass Spectrometry, Amides chemistry, Atmosphere, Carboxylic Acids chemistry, Environmental Pollutants chemistry, Fluorocarbons chemistry
- Abstract
Polyfluorinated amides (PFAMs) are a class of fluorinated compounds which were produced as unintentional byproducts in the electrochemical fluorination process used for polyfluorinated sulfonamide synthesis in 1947-2002. To investigate the historical potential of PFAMs as an atmospheric perfluorinated acid (PFCA) source we studied N-ethylperfluorobutyramide (EtFBA) as a surrogate for longer chained PFAMs. Smog chamber relative rate techniques were used to measure bimolecular rate coefficients for reactions of EtFBA with chlorine atoms and hydroxyl radicals. It was found kCl = (2.08 ± 0.15) × 10(-11) cm(3) molecule(-1) s(-1) and kOH = (2.65 ± 0.50) × 10(-12) cm(3) molecule(-1) s(-1) and the atmospheric lifetime of EtFBA with respect to reaction with OH was estimated to be approximately 4.4 days. Offline sampling with both GC-MS and LC-MS/MS techniques was used to determine the products and hence a plausible pathway of atmospheric oxidation of EtFBA. Three primary oxidation products were observed by GC-MS, the N-dealkylation product C3F7C(O)NH2 and two carbonyl products, probably C3F7C(O)N(H)C(O)CH3 and C3F7C(O)N(H)CH2CHO. These primary products react further to give perfluorocarboxylic acids (PFCAs) as detected by LC-MS/MS, suggesting that eight carbon PFAMs were a historical source of PFCAs to remote regions, including the Canadian Arctic.
- Published
- 2013
- Full Text
- View/download PDF
3. Atmospheric chemistry of benzyl alcohol: kinetics and mechanism of reaction with OH radicals.
- Author
-
Bernard F, Magneron I, Eyglunent G, Daële V, Wallington TJ, Hurley MD, and Mellouki A
- Subjects
- Benzaldehydes chemistry, Ethylenes chemistry, Kinetics, Oxidation-Reduction, Ozone chemistry, Spectroscopy, Fourier Transform Infrared, Atmosphere chemistry, Benzyl Alcohol chemistry, Hydroxyl Radical chemistry
- Abstract
The atmospheric oxidation of benzyl alcohol has been investigated using smog chambers at ICARE, FORD, and EUPHORE. The rate coefficient for reaction with OH radicals was measured and an upper limit for the reaction with ozone was established; kOH = (2.8 ± 0.4) × 10(-11) at 297 ± 3 K (averaged value including results from Harrison and Wells) and kO(3) < 2 × 10(-19) cm(3) molecule(-1) s(-1) at 299 K. The products of the OH radical initiated oxidation of benzyl alcohol in the presence of NOX were studied. Benzaldehyde, originating from H-abstraction from the -CH(2)OH group, was identified using in situ FTIR spectroscopy, HPLC-UV/FID, and GC-PID and quantified in a yield of (24 ± 5) %. Ring retaining products originating from OH-addition to the aromatic ring such as o-hydroxybenzylalcohol and o-dihydroxybenzene as well as ring-cleavage products such as glyoxal were also identified and quantified with molar yields of (22 ± 2)%, (10 ± 3)%, and (2.7 ± 0.7)%, respectively. Formaldehyde was observed with a molar yield of (27 ± 10)%. The results are discussed with respect to previous studies and the atmospheric oxidation mechanism of benzyl alcohol.
- Published
- 2013
- Full Text
- View/download PDF
4. Comment on "Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use".
- Author
-
Wallington TJ, Anderson JE, and Winkler SL
- Subjects
- Atmosphere, Ethanol chemistry
- Published
- 2013
- Full Text
- View/download PDF
5. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials.
- Author
-
Sulbaek Andersen MP, Nielsen OJ, Karpichev B, Wallington TJ, and Sander SP
- Subjects
- Chlorine chemistry, Desflurane, Hydroxyl Radical chemistry, Ions chemistry, Kinetics, Sevoflurane, Atmosphere chemistry, Global Warming, Isoflurane analogs & derivatives, Isoflurane chemistry, Methyl Ethers chemistry
- Abstract
The smog chamber/Fourier-transform infrared spectroscopy (FTIR) technique was used to measure the rate coefficients k(Cl + CF(3)CHClOCHF(2), isoflurane) = (4.5 ± 0.8) × 10(-15), k(Cl + CF(3)CHFOCHF(2), desflurane) = (1.0 ± 0.3) × 10(-15), k(Cl + (CF(3))(2)CHOCH(2)F, sevoflurane) = (1.1 ± 0.1) × 10(-13), and k(OH + (CF(3))(2)CHOCH(2)F) = (3.5 ± 0.7) × 10(-14) cm(3) molecule(-1) in 700 Torr of N(2)/air diluent at 295 ± 2 K. An upper limit of 6 × 10(-17) cm(3) molecule(-1) was established for k(Cl + (CF(3))(2)CHOC(O)F). The laser photolysis/laser-induced fluorescence (LP/LIF) technique was employed to determine hydroxyl radical rate coefficients as a function of temperature (241-298 K): k(OH + CF(3)CHFOCHF(2)) = (7.05 ± 1.80) × 10(-13) exp[-(1551 ± 72)/T] cm(3) molecule(-1); k(296 ± 1 K) = (3.73 ± 0.08) × 10(-15) cm(3) molecule(-1), and k(OH + (CF(3))(2)CHOCH(2)F) = (9.98 ± 3.24) × 10(-13) exp[-(969 ± 82)/T] cm(3) molecule(-1); k(298 ± 1 K) = (3.94 ± 0.30) × 10(-14) cm(3) molecule(-1). The rate coefficient of k(OH + CF(3)CHClOCHF(2), 296 ± 1 K) = (1.45 ± 0.16) × 10(-14) cm(3) molecule(-1) was also determined. Chlorine atoms react with CF(3)CHFOCHF(2) via H-abstraction to give CF(3)CFOCHF(2) and CF(3)CHFOCF(2) radicals in yields of approximately 83% and 17%. The major atmospheric fate of the CF(3)C(O)FOCHF(2) alkoxy radical is decomposition via elimination of CF(3) to give FC(O)OCHF(2) and is unaffected by the method used to generate the CF(3)C(O)FOCHF(2) radicals. CF(3)CHFOCF(2) radicals add O(2) and are converted by subsequent reactions into CF(3)CHFOCF(2)O alkoxy radicals, which decompose to give COF(2) and CF(3)CHFO radicals. In 700 Torr of air 82% of CF(3)CHFO radicals undergo C-C scission to yield HC(O)F and CF(3) radicals with the remaining 18% reacting with O(2) to give CF(3)C(O)F. Atmospheric oxidation of (CF(3))(2)CHOCH(2)F gives (CF(3))(2)CHOC(O)F in a molar yield of 93 ± 6% with CF(3)C(O)CF(3) and HCOF as minor products. The IR spectra of (CF(3))(2)CHOC(O)F and FC(O)OCHF(2) are reported for the first time. The atmospheric lifetimes of CF(3)CHClOCHF(2), CF(3)CHFOCHF(2), and (CF(3))(2)CHOCH(2)F (sevoflurane) are estimated at 3.2, 14, and 1.1 years, respectively. The 100 year time horizon global warming potentials of isoflurane, desflurane, and sevoflurane are 510, 2540, and 130, respectively. The atmospheric degradation products of these anesthetics are not of environmental concern.
- Published
- 2012
- Full Text
- View/download PDF
6. Atmospheric degradation of perfluoro-2-methyl-3-pentanone: photolysis, hydrolysis and hydration.
- Author
-
Jackson DA, Young CJ, Hurley MD, Wallington TJ, and Mabury SA
- Subjects
- Hydrolysis, Kinetics, Nitrates chemistry, Atmosphere chemistry, Fluorocarbons chemistry, Photolysis, Water chemistry
- Abstract
Perfluorinated carboxylic acids are widely distributed in the environment, including remote regions, but their sources are not well understood. Perfluoropropionic acid (PFPrA, CF(3)CF(2)C(O)OH) has been observed in rainwater but the observed amounts can not be explained by currently known degradation pathways. Smog chamber studies were performed to assess the potential of photolysis of perfluoro-2-methyl-3-pentanone (PFMP, CF(3)CF(2)C(O)CF(CF(3))(2)), a commonly used fire-fighting fluid, to contribute to the observed PFPrA loadings. The photolysis of PFMP gives CF(3)CF(2)C·(O) and ·CF(CF(3))(2) radicals. A small (0.6%) but discernible yield of PFPrA was observed in smog chamber experiments by liquid chromatography-mass spectrometry offline chamber samples. The Tropospheric Ultraviolet-Visible (TUV) model was used to estimate an atmospheric lifetime of PFMP with respect to photolysis of 4-14 days depending on latitude and time of year. PFMP can undergo hydrolysis to produce PFPrA and CF(3)CFHCF(3) (HFC-227ea) in a manner analogous to the Haloform reaction. The rate of hydrolysis was measured using (19)F NMR at two different pHs and was too slow to be of importance in the atmosphere. Hydration of PFMP to give a geminal diol was investigated computationally using density functional theory. It was determined that hydration is not an important environmental fate of PFMP. The atmospheric fate of PFMP seems to be direct photolysis which, under low NO(x) conditions, gives PFPrA in a small yield. PFMP degradation contributes to, but does not appear to be the major source of, PFPrA observed in rainwater.
- Published
- 2011
- Full Text
- View/download PDF
7. Atmospheric chemistry of two biodiesel model compounds: methyl propionate and ethyl acetate.
- Author
-
Andersen VF, Berhanu TA, Nilsson EJ, Jørgensen S, Nielsen OJ, Wallington TJ, and Johnson MS
- Subjects
- Computer Simulation, Esters chemistry, Kinetics, Nitric Oxide, Oxidation-Reduction, Oxygen, Spectrophotometry, Infrared, Acetates chemistry, Atmosphere chemistry, Biofuels, Chlorine chemistry, Hydroxyl Radical chemistry, Organic Chemicals chemistry, Propionates chemistry
- Abstract
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (∼99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement., (© 2011 American Chemical Society)
- Published
- 2011
- Full Text
- View/download PDF
8. Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency.
- Author
-
Wallington TJ, Andersen MP, and Nielsen OJ
- Subjects
- Absorption, Global Warming, Greenhouse Effect, Kinetics, Atmosphere chemistry, Infrared Rays, Radiation
- Published
- 2010
- Full Text
- View/download PDF
9. Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x).
- Author
-
Hurley MD, Wallington TJ, Laursen L, Javadi MS, Nielsen OJ, Yamanaka T, and Kawasaki M
- Subjects
- Kinetics, Oxidation-Reduction, Spectroscopy, Fourier Transform Infrared, 1-Butanol chemistry, Atmosphere chemistry, Chlorine chemistry, Hydroxyl Radical chemistry, Nitric Oxide chemistry
- Abstract
Smog chamber/FTIR techniques were used to determine rate constants of k(Cl+n-butanol) = (2.21 +/- 0.38) x 10(-10) and k(OH+n-butanol) = (8.86 +/- 0.85) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 +/- 2K. The sole primary product identified from the Cl atom initiated oxidation of n-butanol in the absence of NO was butyraldehyde (38 +/- 2%, molar yield). The primary products of the Cl atom initiated oxidation of n-butanol in the presence of NO were (molar yield) butyraldehyde (38 +/- 2%), propionaldehyde (23 +/- 3%), acetaldehyde (12 +/- 4%), and formaldehyde (33 +/- 3%). The substantially lower yields of propionaldehyde, acetaldehyde, and formaldehyde as primary products in experiments conducted in the absence of NO suggests that chemical activation is important in the atmospheric chemistry of CH(3)CH(2)CH(O)CH(2)OH and CH(3)CH(O)CH(2)CH(2)OH alkoxy radicals. The primary products of the OH radical initiated oxidation of n-butanol in the presence of NO were (molar yields) butyraldehyde (44 +/- 4%), propionaldehyde (19 +/- 2%), and acetaldehyde (12 +/- 3%). In all cases, the product yields were independent of oxygen concentration over the partial pressure range of 10-600 Torr. The yields of propionaldehyde, acetaldehyde, and formaldehyde quoted above were not corrected for secondary formation via oxidation of higher aldehydes and should be treated as upper limits. The reactions of Cl atoms and OH radicals with n-butanol proceed 38 +/- 2 and 44 +/- 4%, respectively, via attack on the alpha-position to give an alpha-hydroxy alkyl radical which reacts with O(2) to give butyraldehyde. The results are discussed with respect to the atmospheric chemistry of n-butanol.
- Published
- 2009
- Full Text
- View/download PDF
10. Atmospheric chemistry of sulfuryl fluoride: reaction with OH radicals, Cl atoms and O3, atmospheric lifetime, IR spectrum, and global warming potential.
- Author
-
Andersen MP, Blake DR, Rowland FS, Hurley MD, and Wallington TJ
- Subjects
- Air analysis, Environment, Kinetics, Spectrophotometry, Infrared, Time Factors, Atmosphere chemistry, Chlorides chemistry, Greenhouse Effect, Hydroxyl Radical chemistry, Ozone chemistry, Sulfinic Acids chemistry
- Abstract
Sulfuryl fluoride (SO2F2) is a radiatively active industrial chemical released into the atmosphere in significant (ktonne/ year) quantities. The potential for SO2F2 to contribute to radiative forcing of climate change needs to be assessed. Long path length FTIR/smog chamber techniques were used to investigate the kinetics of the gas-phase reactions of Cl atoms, OH radicals, and O3 with SO2F2, in 700 Torr total pressure of air or N2 at 296 +/- 1 K. Upper limits of k(Cl + SO2F2) < 9 x 10(-19), k(OH + SO2F2) < 1.7 x 10(-14) and k(O3 + SO2F2) < 5.5 x 10(-24) cm3 molecule(-1) s(-1) were determined. Reaction with Cl atoms, OH radicals, or O3 does not provide an efficient removal mechanism for SO2F2. The infrared spectrum of SO2F2 is reported and a radiative efficiency of 0.196 W m(-2) ppbv(-1) was calculated. Historic production data estimates are presented which provide an upper limit for expected atmospheric concentrations. The radiative forcing of climate change associated with emissions of SO2F2 depends critically on the atmospheric lifetime of SO2F2. Further research is urgently needed to define the magnitude of potential nonatmospheric sinks.
- Published
- 2009
- Full Text
- View/download PDF
11. Atmospheric chemistry of 4:2 fluorotelomer iodide (n-C4F9CH2CH2I): kinetics and products of photolysis and reaction with OH radicals and Cl atoms.
- Author
-
Young CJ, Hurley MD, Wallington TJ, and Mabury SA
- Subjects
- Aldehydes chemistry, Algorithms, Carboxylic Acids chemistry, Kinetics, Molecular Structure, Oxidation-Reduction, Quantum Theory, Spectrophotometry, Ultraviolet, Spectroscopy, Fourier Transform Infrared, Temperature, Atmosphere chemistry, Chlorine chemistry, Fluorocarbons chemistry, Hydrocarbons, Iodinated chemistry, Hydroxyl Radical chemistry, Oxidants chemistry, Photolysis
- Abstract
Relative rate techniques were used to study the title reactions and determine rate constants of k(Cl + C(4)F(9)CH(2)CH(2)I) = (1.25 +/- 0.15) x 10(-12) and k(OH + C(4)F(9)CH(2)CH(2)I) = (1.2 +/- 0.6) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr total pressure at 295 K. The fluorotelomer aldehyde (C(4)F(9)CH(2)CHO), perfluorinated aldehyde (C(4)F(9)CHO), fluorotelomer acid (C(4)F(9)CH(2)C(O)OH), fluorotelomer peracid (C(4)F(9)CH(2)C(O)OOH), and several perfluorocarboxylic acids were detected by in situ FTIR spectroscopy and offline analysis as products of the chlorine atom initiated oxidation of C(4)F(9)CH(2)CH(2)I in air. The UV-visible spectra of C(4)F(9)CH(2)CH(2)I and C(2)H(5)Cl were recorded over the range of 200-400 nm. Photolysis of C(4)F(9)CH(2)CH(2)I gives C(4)F(9)CH(2)CHO as the major observed product. By assumption of a photolysis quantum yield of unity, it was calculated that the atmospheric lifetime of C(4)F(9)CH(2)CH(2)I is determined by photolysis and is a few days. A mechanism for the atmospheric oxidation of fluorotelomer iodides, (C(x)F(2x+1)CH(2)CH(2)I, where x = 2, 4, 6,...) is proposed. Atmospheric oxidation of fluorotelomer iodides is a potential source of perfluorocarboxylic acids.
- Published
- 2008
- Full Text
- View/download PDF
12. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.
- Author
-
Hurley MD, Wallington TJ, Bjarrum M, Javadi MS, and Nielsen OJ
- Subjects
- Air Pollutants chemistry, Kinetics, Oxidation-Reduction, Spectroscopy, Fourier Transform Infrared, Atmosphere chemistry, Chlorine chemistry, Hydroxyl Radical chemistry, Nitric Oxide chemistry, Pentanols chemistry
- Abstract
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of 3-pentanol and determine rate constants of k(Cl+3-pentanol) = (2.03 +/- 0.23) x 10 (-10) and k(OH+3-pentanol) = (1.32 +/- 0.15) x 10 (-11) cm (3) molecule (-1) s (-1) in 700 Torr of N 2/O 2 diluent at 296 +/- 2 K. The primary products of the Cl atom initiated oxidation of 3-pentanol in the absence of NO were (with molar yields) 3-pentanone (26 +/- 2%), propionaldehyde (12 +/- 2%), acetaldehyde (13 +/- 2%) and formaldehyde (2 +/- 1%). The primary products of the Cl atom initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (51 +/- 4%), propionaldehyde (39 +/- 2%), acetaldehyde (44 +/- 4%) and formaldehyde (4 +/- 1%). The primary products of the OH radical initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (58 +/- 3%), propionaldehyde (28 +/- 2%), and acetaldehyde (37 +/- 2%). In all cases the product yields were independent of oxygen concentration over the partial pressure range 10-700 Torr. The reactions of Cl atoms and OH radicals with 3-pentanol proceed 26 +/- 2 and 58 +/- 3%, respectively, via attack on the 3-position to give an alpha-hydroxyalkyl radical, which reacts with O 2 to give 3-pentanone. The results are discussed with respect to the literature data and atmospheric chemistry of 3-pentanol.
- Published
- 2008
- Full Text
- View/download PDF
13. Comment on "Atmospheric chemistry of linear perfluorinated aldehydes: dissociation kinetics of CnF2n+1CO radicals".
- Author
-
Wallington TJ, Mabury SA, Hurley MD, Andersen MP, Nielsen OJ, Ellis DA, and Martin JW
- Subjects
- Kinetics, Aldehydes chemistry, Atmosphere chemistry, Carbon Monoxide chemistry, Free Radicals chemistry, Hydrocarbons, Fluorinated chemistry
- Published
- 2008
- Full Text
- View/download PDF
14. Atmospheric chemistry of a model biodiesel fuel, CH3C(O)O(CH2)2OC(O)CH3: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx.
- Author
-
Hurley MD, Ball JC, Wallington TJ, Toft A, Nielsen OJ, Bertman S, and Perkovic M
- Subjects
- Free Radicals chemistry, Kinetics, Molecular Structure, Oxidation-Reduction, Spectrophotometry, Infrared, Atmosphere chemistry, Chlorine chemistry, Ethylene Glycols chemistry, Gasoline, Hydroxides chemistry, Models, Chemical, Nitrogen Oxides chemistry
- Abstract
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.
- Published
- 2007
- Full Text
- View/download PDF
15. Atmospheric chemistry of CF3CH=CH2 and C4F9CH=CH2: products of the gas-phase reactions with Cl atoms and OH radicals.
- Author
-
Nakayama T, Takahashi K, Matsumi Y, Toft A, Andersen MP, Nielsen OJ, Waterland RL, Buck RC, Hurley MD, and Wallington TJ
- Subjects
- Gases chemistry, Nitrogen chemistry, Oxidation-Reduction, Oxygen chemistry, Pressure, Temperature, Atmosphere chemistry, Chlorine chemistry, Fluorocarbons chemistry, Hydrocarbons, Fluorinated chemistry, Hydroxyl Radical chemistry
- Abstract
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.
- Published
- 2007
- Full Text
- View/download PDF
16. Atmospheric chemistry of n-C(x)F(2)(x)(+1)CHO (x = 1, 2, 3, 4): fate of n-C(x)F(2)(x)(+1)C(O) radicals.
- Author
-
Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Nielsen OJ, Ellis DA, Martin JW, and Mabury SA
- Subjects
- Free Radicals chemistry, Peroxides chemistry, Air Pollutants chemistry, Aldehydes chemistry, Atmosphere chemistry, Carboxylic Acids chemistry, Fluorocarbons chemistry
- Abstract
Smog chamber/FTIR techniques were used to study the atmospheric fate of n-C(x)F(2)(x)(+1)C(O) (x = 1, 2, 3, 4) radicals in 700 Torr O(2)/N(2) diluent at 298 +/- 3 K. A competition is observed between reaction with O(2) to form n-C(x)()F(2)(x)()(+1)C(O)O(2) radicals and decomposition to form n-C(x)F(2)(x)(+1) radicals and CO. In 700 Torr O(2)/N(2) diluent at 298 +/- 3 K, the rate constant ratio, k(n-C(x)F(2)(x)(+1)C(O) + O(2) --> n-C(x)F(2)(x)(+1)C(O)O(2))/k(n-C(x)F(2)(x)(+1)C(O) --> n-C(x)F(2)(x)(+1) + CO) = (1.30 +/- 0.05) x 10(-17), (1.90 +/- 0.17) x 10(-19), (5.04 +/- 0.40) x 10(-20), and (2.67 +/- 0.42) x 10(-20) cm(3) molecule(-1) for x = 1, 2, 3, 4, respectively. In one atmosphere of air at 298 K, reaction with O(2) accounts for 99%, 50%, 21%, and 12% of the loss of n-C(x)F(2)(x)(+1)C(O) radicals for x = 1, 2, 3, 4, respectively. Results are discussed with respect to the atmospheric chemistry of n-C(x)F(2)(x)(+1)C(O) radicals and their possible role in contributing to the formation of perfluorocarboxylic acids in the environment.
- Published
- 2006
- Full Text
- View/download PDF
17. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: kinetics and mechanism of reaction with OH.
- Author
-
D'eon JC, Hurley MD, Wallington TJ, and Mabury SA
- Subjects
- Fluorocarbons analysis, Gas Chromatography-Mass Spectrometry, Kinetics, Spectroscopy, Fourier Transform Infrared, Sulfonamides analysis, Sulfonic Acids analysis, Sulfonic Acids chemistry, Trifluoroacetic Acid analysis, Trifluoroacetic Acid chemistry, Air Pollutants, Atmosphere chemistry, Fluorocarbons chemistry, Hydroxyl Radical chemistry, Sulfonamides chemistry
- Abstract
Relative rate methods were used to measure the gas-phase reaction of N-methyl perfluorobutane sulfonamidoethanol (NMeFBSE) with OH radicals, giving k(OH + NMeFBSE) = (5.8 +/- 0.8) x 10(-12) cm3 molecule(-1) s(-1) in 750 Torr of air diluent at 296 K. The atmospheric lifetime of NMeFBSE is determined by reaction with OH radicals and is approximately 2 days. Degradation products were identified by in situ FTIR spectroscopy and offline GC-MS and LC-MS/MS analysis. The primary carbonyl product C4F9SO2N(CH3)CH2CHO, N-methyl perfluorobutane sulfonamide (C4F9SO2NH(CH3)), perfluorobutanoic acid (C3F7C(O)OH), perfluoropropanoic acid (C2F5C(O)OH), trifluoroacetic acid (CF3C(O)OH), carbonyl fluoride (COF2), and perfluorobutane sulfonic acid (C4F9SO3H) were identified as products. A mechanism involving the addition of OH to the sulfone double bond was proposed to explain the production of perfluorobutane sulfonic acid and perfluorinated carboxylic acids in yields of 1 and 10%, respectively. The gas-phase N-dealkylation product, N-methyl perfluorobutane sulfonamide (NMeFBSA), has an atmospheric lifetime (>20 days) which is much longer than that of the parent compound, NMeFBSE. Accordingly,the production of NMeFBSA exposes a mechanism by which NMeFBSE may contribute to the burden of perfluorinated contamination in remote locations despite its relatively short atmospheric lifetime. Using the atmospheric fate of NMeFBSE as a guide, it appears that anthropogenic production of N-methyl perfluorooctane sulfonamidoethanol (NMeFOSE) contributes to the ubiquity of perfluoroalkyl sulfonate and carboxylate compounds in the environment.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.