1. UQAM‐TCW: A Global Hybrid Tropical Cyclone Wind Model Based Upon Statistical and Coupled Climate Models.
- Author
-
Carozza, David A., Boudreault, Mathieu, Grenier, Manuel, and Caron, Louis‐Philippe
- Subjects
TROPICAL cyclones ,ATMOSPHERIC models ,CLIMATE change models ,EL Nino ,FINANCIAL risk management ,STORMS - Abstract
Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for example, land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model (the UQAM‐TCW model thereafter) that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global hazard maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers. Plain Language Summary: Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a difficult task. Being able to randomly simulate TCs and their features (such as wind speed) with mathematical models is therefore critical to build scenarios (and their corresponding probability) for land use planning and financial risk management. A common approach is to simulate TCs by tracking them directly in climate model outputs but this often underestimates the frequency of intense TCs while being computationally costly overall to generate a large number of events. For these reasons, many authors have looked into alternative approaches that replicate key physical features of TCs but rather using statistical models that are much less computationally demanding. This paper therefore presents a global TC model that leverages the strengths of both statistical and climate models to simulate a large number of TCs whose features are consistent with the physics and observations. As an important global phenomenon that affects TCs globally, we also integrate in our model the effects of El Niño. The paper focuses on the methodology and validation of each model component and concludes with global hazard maps for direct and indirect hits. Key Points: We present a global tropical cyclone (TC) wind model built upon a climate model large ensemble that can be used for risk analysisWe integrate ENSO into our model since it is a strong driver of storm annual frequency, cyclogenesis, trajectories, and intensityWe present global hazard maps consistent with statistical features of TC components and coherent with a global climate model [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF