1. Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales
- Author
-
C. Ruyer, M. Swantusch, L. Lancia, Motoaki Nakatsutsumi, S. Bolaños, M. Grech, H. Pépin, Patrizio Antici, J. Böker, Marco Borghesi, M. V. Starodubtsev, Ronnie Shepherd, L. Gremillet, V. Dervieux, Oswald Willi, Julien Fuchs, Sophia Chen, Bruno Albertazzi, Caterina Riconda, Lorenzo Romagnani, Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Separation Science and Engineering, Chinese Academy of Sciences [Changchun Branch] (CAS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Lawrence Livermore National Laboratory (LLNL), Queen's University [Belfast] (QUB), Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Institute of Applied Physics (IAP, Nizhny Novgorod), DAM Île-de-France (DAM/DIF), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), and ANR-17-CE30-0026,PiNNaCLE,Développement d'une ligne de neutrons pulsés compacte et de haute brillance(2017)
- Subjects
Electromagnetic field ,Physics ,Resistive touchscreen ,General Physics and Astronomy ,Plasma ,Electron ,Laser ,01 natural sciences ,Instability ,010305 fluids & plasmas ,law.invention ,Weibel instability ,Filamentation ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Plasma Physics ,law ,Physics::Space Physics ,0103 physical sciences ,Atomic physics ,010306 general physics - Abstract
Collective processes in plasmas often induce microinstabilities that play an important role in many space or laboratory plasma environments. Particularly notable is the Weibel-type current filamentation instability, which is believed to drive the creation of collisionless shocks in weakly magnetized astrophysical plasmas. Here, this instability class is studied through interactions of ultraintense and short laser pulses with solid foils, leading to localized generation of megaelectronvolt electrons. Proton radiographic measurements of both low- and high-resistivity targets show two distinct, superimposed electromagnetic field patterns arising from the interpenetration of the megaelectronvolt electrons and the background plasma. Particle-in-cell simulations and theoretical estimates suggest that the collisionless Weibel instability building up in the dilute expanding plasmas formed at the target surfaces causes the observed azimuthally symmetric electromagnetic filaments. For a sufficiently high resistivity of the target foil, an additional resistive instability is triggered in the bulk target, giving rise to radially elongated filaments. The data reveal the growth of both filamentation instabilities over large temporal (tens of picoseconds) and spatial (hundreds of micrometres) scales. In the interaction of ultraintense, short laser pulses with solid targets, the collisionless Weibel instability is observed. For a sufficiently high resistivity of the target, an additional resistive instability appears.
- Published
- 2020
- Full Text
- View/download PDF