1. Molecular brain (micro report) oxytocin ameliorates impaired social behavior in a mouse model of 3q29 deletion syndrome.
- Author
-
Takemoto T, Baba M, Yokoyama K, Kitagawa K, Nagayasu K, Ago Y, Seiriki K, Hayata-Takano A, Kasai A, Mori D, Ozaki N, Takuma K, Hashimoto R, Hashimoto H, and Nakazawa T
- Subjects
- Animals, Brain, Chromosomes, Human, Pair 3, Developmental Disabilities, Disease Models, Animal, Mice, Autism Spectrum Disorder drug therapy, Autism Spectrum Disorder genetics, Chromosome Deletion, Intellectual Disability, Oxytocin pharmacology, Social Behavior
- Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by specific social symptoms, restricted interests, stereotyped repetitive behaviors, and delayed language development. The 3q29 microdeletion (3q29del), a recurrent copy number variant, confers a high risk for ASD and schizophrenia, and serves as an important pathological model for investigating the molecular pathogenesis of a large number of neurodevelopmental and psychiatric conditions. Recently, mouse models carrying a deletion of the chromosomal region corresponding to the human 3q29 region (Df/+ mice) were generated and demonstrated neurodevelopmental and psychiatric conditions associated behavioral abnormalities, pointing to the relevance of Df/+ mice as a model for these conditions with high construct and face validity. Currently, the molecular pathogenesis of these behavioral phenotypes in Df/+ mice remains unclear. The oxytocin (OXT) system plays a central role in social behavior across species and has a potential role in ASD. In this study, to elucidate the molecular mechanisms behind impaired social behavior in Df/+ mice, we investigated the possible involvement of OXT signaling in impaired social behavior in Df/+ mice. We demonstrated that OXT administration restored the impaired social behavior in Df/+ mice. We also demonstrated that the number of OXT-positive cells in the paraventricular nucleus (PVN) was significantly lower in Df/+ mice than in wild-type (WT) littermates. Consistent with this, the level of OXT peptide in the cerebral cortex of Df/+ mice was lower than in WT littermates. Our study may provide important insights into the molecular pathophysiological basis of neurodevelopmental and psychiatric conditions, including ASD., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF