1. Double-Edged Nanobiotic Platform with Protean Functionality: Leveraging the Synergistic Antibacterial Activity of a Food-Grade Peptide to Mitigate Multidrug-Resistant Bacterial Pathogens
- Author
-
Piyush Kumar, Arshad Ali Shaikh, Pardeep Kumar, Vivek Kumar Gupta, Rajat Dhyani, Tarun Kumar Sharma, Ajmal Hussain, Krishnakant Gangele, Krishna Mohan Poluri, Korasapati Nageswara Rao, Ravinder Kumar Malik, Ranjana Pathania, and Naveen Kumar Navani
- Subjects
Mice ,Bacteria ,Biofilms ,Drug Resistance, Multiple, Bacterial ,Animals ,General Materials Science ,Microbial Sensitivity Tests ,Staphylococcal Infections ,Peptides ,Anti-Bacterial Agents - Abstract
While persistent efforts are being made to develop a novel arsenal against bacterial pathogens, the development of such materials remains a formidable challenge. One such strategy is to develop a multimodel antibacterial agent which will synergistically combat bacterial pathogens, including multidrug-resistant bacteria. Herein, we used pediocin, a class IIa bacteriocin, to decorate Ag° and developed a double-edged nanoplatform (Pd-SNPs) that inherits intrinsic properties of both antibacterial moieties, which engenders strikingly high antibacterial potency against a broad spectrum of bacterial pathogens including the ESKAPE category without displaying adverse cytotoxicity. The enhanced antimicrobial activity of Pd-SNPs is due to their higher affinity with the bacterial cell wall, which allows Pd-SNPs to penetrate the outer membrane, inducing membrane depolarization and the disruption of membrane integrity. Bioreporter assays revealed the upregulation of
- Published
- 2022
- Full Text
- View/download PDF