1. Identification of GXXXXG motif in Chrysophsin-1 and its implication in the design of analogs with cell-selective antimicrobial and anti-endotoxin activities.
- Author
-
Tripathi AK, Kumari T, Harioudh MK, Yadav PK, Kathuria M, Shukla PK, Mitra K, and Ghosh JK
- Subjects
- Animals, Anti-Infective Agents chemistry, Antimicrobial Cationic Peptides chemistry, Bacteria drug effects, Fungi drug effects, Hemolysis drug effects, Humans, Macrophages cytology, Macrophages drug effects, Mice, Mice, Inbred BALB C, Microbial Sensitivity Tests, Amino Acid Motifs, Anti-Infective Agents pharmacology, Antimicrobial Cationic Peptides pharmacology, Bacteria growth & development, Drug Design, Fungi growth & development, Lipopolysaccharides antagonists & inhibitors
- Abstract
Marine fish antimicrobial peptide, chrysophsin-1 possesses versatile biological activities but its non-selective nature restricts its therapeutic possibilities. Often small alterations in structural motifs result in significant changes in the properties of concerned proteins/peptides. We have identified GXXXXG motif in chrysophsin-1. Glycine residue(s) of this motif in Chrysophsin-1 was/were replaced with alanine, valine and proline residue(s). Of these, proline-substituted Chrysophsin-1 analogs exhibited significantly reduced cytotoxicity towards mammalian cells. Further, these analogs showed broad-spectrum activity against Gram-positive, Gram-negative bacteria, Methicillin-resistant Staphylococcus aureus strains and fungi and also retained antibacterial activity in presence of physiological salts, serum and at elevated temperatures indicative of their therapeutic potential. These Chrysophsin-1 analogs also inhibited lipopolysaccharide (LPS) induced pro-inflammatory responses in THP-1 cells and in murine primary macrophages. One of these single proline-substituted Chrysophsin-1 analogs inhibited LPS-stimulated pro-inflammatory cytokine production in BALB/c mice and elicited appreciable survival of mice administered with a lethal dose of LPS in a model of severe sepsis. The data for the first time showed the implication of GXXXXG motifs in functional and biological properties of an antimicrobial peptide and could be useful to design novel anti-microbial and anti-endotoxin peptides by employing this motif.
- Published
- 2017
- Full Text
- View/download PDF