1. Multicentennial record of Labrador Sea primary productivity and sea-ice variability archived in coralline algal barium.
- Author
-
Chan P, Halfar J, Adey W, Hetzinger S, Zack T, Moore GWK, Wortmann UG, Williams B, and Hou A
- Subjects
- Atlantic Ocean, Calcium analysis, Carbon Isotopes analysis, Ice Cover, Newfoundland and Labrador, Phytoplankton chemistry, Seawater, Barium analysis, Climate Change, Ecosystem, Phytoplankton metabolism
- Abstract
Accelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ
13 C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels-unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.- Published
- 2017
- Full Text
- View/download PDF