1. Caudal auricular muscle variations and the evolution of echolocation behavior in pteropodid bats.
- Author
-
Tzu-Chin CHI, Vuong Tan TU, JoonHyuk SOHN, Junpei KIMURA, and Daisuke KOYABU
- Subjects
BAT behavior ,EAR ,COMPARATIVE anatomy ,ANATOMY ,BATS ,SONAR - Abstract
Among bats, rhinolophoids and yangochiropterans, but not pteropodids, exhibit laryngeal echolocation. Although Rousettus has been regarded as the only pteropodid capable of echolocation using tongue clicks, recent evidence suggests that other species of pteropodids are also capable of echolocation using wing clicks. Studies on laryngeal echolocators suggest that delicate ear movements are essential for the echolocation behavior of bats and that the cervicoauricularis muscles play a critical role in such ear movements. In this study, we observed the gross anatomy of cervicoauricularis muscles in three species of pteropodids (Cynopterus sphinx, Eonycteris spelaea, and Rousettus leschenaultii) to examine whether ear muscle anatomy varies among pteropodids with different echolocation types and between pteropodids and laryngeal echolocating bats. We found that M. cervicoauricularis profundus originates from the nuchal crest in tongue-click echolocators (C. leschenaultii) and from the midline in wing-click echolocators (C. sphinx and E. spelaea). In general, tongue-click echolocation using high click rates is considered to be more sophisticated in terms of sonar performance than wing-click echolocation. M. cervicoauricularis profundus originating from the nuchal crest (CPNC) is not common in non-bat laurasiatherian mammals, but can be found in laryngeal echolocating bats. As it pulls the ear pinna caudally in the horizontal plane and increases the access to sound, CPNC found in R. leschenaultii and laryngeal echolocating bats may be a key characteristic of the sophisticated active echolocation behavior of bats. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF