The present thesis probes the heat and mass transfer phenomena in packed bed of particles. The gap in literature for realistically packed dense particle packings is explored, following which a new methodology to study external heat transfer is presented and evaluated with deep sensitivity analysis. The newly developed method is applied to obtain new closure models for external heat and mass transfer in packed beds of mono-disperse spherical particles and cylindrical particles of different aspect ratios. In addition, the obtained data helps refit the new Ergun constant for pressure drop in these dense packings. A step by step examination for internal mass transfer and reactions depending upon several levels of complexities in literature i.e. different reaction order, multiple reacting species, and gas volume generation/consumption and in practical application of steam methane reforming reveals the need for improvement in industrially viable 1D models. The developed closure models for external heat and mass transfer along with the data from computationally expensive particle-resolved direct numerical simulations (PR-DNS) in dense packings of monodisperse spherical particles with catalytic reactions inside the porous particles are used to verify and improve the internal mass transfer closures for 1D models through multiscale modelling. The enhanced 1D model is then used to simulate an industrial scale packed bed chemical looping reforming (PBCLR) reactor. As an application of the work done in this PhD, an alternative to resolved 3D simulation is also presented in this thesis in form of non-resolved Euler Lagrange 3D simulations. The results obtained are documented and discussed in appropriate chapters of this thesis. RESUMO: A presente tese estuda os fenómenos de transferência de calor e massa em leito fixo de partículas. A lacuna na literatura no que respeita a leitos fixos de partículas é explorada neste trabalho. Deste estudo resultou uma nova estratégia para análise de transferência de calor externa que é descrita e avaliada através uma análise de sensibilidade minuciosa. O método desenvolvido é aplicado no desenvolvivento de novas correlações para transferência de calor externa e transferência de massa em leitos fixos de partículas esféricas mono-dispersas e partículas cilindricas com diferentes proporções. Para além disso, a informação obtida ajuda também a ajustar novas constantes de Ergun para a queda de pressão em leitos densos. Uma análise detalhada da literatura no que respeita à transferência de massa interna e reacções químicas dependendo de diferentes níveis de complexidade como diferente ordem de reacção, multiplas espécies reaccionais, volume de gás produzido/consumido e considerando a aplicação no processo de “steam methane reforming” revela a necessidade de melhorar os modelos 1D actualmente usuados a nível indústrial. As correlações desenvolvidas para transferência de calor externa e transferência de massa juntamente com a informação obtida de simulações “particle-resolved direct numerical simulations” (PR-DNS) de elevados custos computacionais em leitos densos de particulas esféricas mono-dispersas com reacções químicas dentro de partículas porosas são usadas para verificar e melhorar as correlações de transferência de massa interna em modelos 1D através de uma metodologia de modelação multiescala. O modelo 1D melhorado é então usado para simular reactores de leito fixo à escala indústrial para o processo de “chemical looping reforming”. O trabalho desenvuelto nesta tese é aplicado em “non-resolved Euler Lagrange 3D simulations” que são uma alternativa às mais complexas “resolved 3D simulations”. Os resultados obtidos são descritos e discutidos nos diferentes capítulos desta tese.