1. Decoding Three Different Preference Levels of Consumers Using Convolutional Neural Network: A Functional Near-Infrared Spectroscopy Study
- Author
-
Kunqiang Qing, Ruisen Huang, and Keum-Shik Hong
- Subjects
Neuromarketing ,convolutional neural network ,preference levels ,Convolutional neural network ,lcsh:RC321-571 ,Behavioral Neuroscience ,commercial advertisement videos ,functional near-infrared spectroscopy ,features ,lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry ,Biological Psychiatry ,Original Research ,Mathematics ,Artificial neural network ,business.industry ,Human Neuroscience ,Pattern recognition ,Preference ,Psychiatry and Mental health ,Neuropsychology and Physiological Psychology ,Neurology ,Skewness ,Kurtosis ,Functional near-infrared spectroscopy ,Pairwise comparison ,Artificial intelligence ,neuromarketing ,business - Abstract
This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.
- Published
- 2021