1. A simulation study of transcranial magnetoacoustic stimulation of the basal ganglia thalamic neural network to improve pathological beta oscillations in Parkinson's disease.
- Author
-
Zhang Y, Zhang H, Xu T, Liu J, Mu J, Chen R, Yang J, Wang P, and Jian X
- Subjects
- Humans, Computer Simulation, Transcranial Magnetic Stimulation methods, Nerve Net physiopathology, Nerve Net diagnostic imaging, Models, Neurological, Parkinson Disease physiopathology, Parkinson Disease therapy, Basal Ganglia physiopathology, Basal Ganglia diagnostic imaging, Thalamus diagnostic imaging, Beta Rhythm
- Abstract
Background: Parkinson's disease (PD) is a common neurodegenerative disease. Transcranial magnetoacoustic stimulation (TMAS) is a new therapy that combines a transcranial focused acoustic pressure field with a magnetic field to excite or inhibit neurons in targeted area, which suppresses the abnormally elevated beta band amplitude in PD states, with high spatial resolution and non-invasively., Objective: To study the effective stimulation parameters of TMAS mononuclear and multinuclear stimulation for the treatment of PD with reduced beta band energy, improved abnormal synchronization, and no thermal damage., Methods: The TMAS model is constructed based on the volunteer's computed tomography, 128 arrays of phase-controlled transducers, and permanent magnets. A basal ganglia-thalamic (BG-Th) neural network model of the PD state was constructed on the basis of the Izhikevich model and the acoustic model. An ultrasound stimulation neuron model is constructed based on the Hodgkin-Huxley model. Numerical simulations of transcranial focused acoustic pressure field, temperature field and induced electric field at single and dual targets were performed using the locations of STN, GPi, and GPe in the human brain as the main stimulation target areas. And the acoustic and electric parameters at the focus were extracted to stimulate mononuclear and multinuclear in the BG-Th neural network., Results: When the stimulating effect of ultrasound is ignored, TMAS-STN simultaneously inhibits the beta-band amplitude of the GPi nucleus, whereas TMAS-GPi fails to simultaneously have an inhibitory effect on the STN. TMAS-STN&GPi can reduce the beta band amplitude. TMAS-STN&GPi&GPe suppressed the PD pathologic beta band amplitude of each nucleus to a greater extent. When considering the stimulatory effect of ultrasound, lower sound pressures of ultrasound do not affect the neuronal firing state, but higher sound pressures may promote or inhibit the stimulatory effect of induced currents., Conclusions: At 9 T static magnetic field, 0.5-1.5 MPa and 1.5-2.0 MPa ultrasound had synergistic effects on individual STN and GPi neurons. TMAS multinuclear stimulation with appropriate ultrasound intensity was the most effective in suppressing the amplitude of pathological beta oscillations in PD and may be clinically useful., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF