1. New polyimidazole ligands against subclass B1 metallo-β-lactamases: Kinetic, microbiological, docking analysis.
- Author
-
Bognanni N, Brisdelli F, Piccirilli A, Basile L, La Piana L, Di Bella S, Principe L, Vecchio G, and Perilli M
- Subjects
- Molecular Docking Simulation, Ligands, Zinc, Chelating Agents, Anti-Bacterial Agents pharmacology, Microbial Sensitivity Tests, beta-Lactamases chemistry, beta-Lactamase Inhibitors pharmacology, beta-Lactamase Inhibitors chemistry
- Abstract
Beta-lactam antibiotics are one of the most commonly used drug classes in managing bacterial infections. However, their use is threatened by the alarming phenomenon of antimicrobial resistance, which represents a worldwide health concern. Given the continuous spread of metallo-β-lactamases (MBLs) producing pathogens, the need to discover broad-spectrum β-lactamase inhibitors is increasingly growing. A series of zinc chelators have been synthesized and investigated for their ability to hamper the Zn-ion network of interactions in the active site of MBLs. We assessed the inhibitory activity of new polyimidazole ligands N,N'-bis((imidazol-4-yl)methyl)-ethylenediamine, N,N,N'-tris((imidazol-4-yl)methyl)-ethylenediamine, N,N,N,N'-tetra((imidazol-4-yl-methyl)-ethylenediamine toward three different subclasses B1 MBLs: VIM-1, NDM-1 and IMP-1 by in vitro assays. The activity of known zinc chelators such as 1,4,7,10,13-Pentaazacyclopentadecane, 1,4,8,11-Tetraazacyclotetradecane and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid was also assessed. Moreover, a molecular docking study was carried to gain insight into the interaction mode of the most active ligands., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF