1. In silico prospection of microorganisms to produce polyhydroxyalkanoate from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain
- Author
-
Daniel Ramón, Daniel Bustamante, Antonia Rojas, Silvia Segarra, Carlos del Cerro, María Auxiliadora Prieto, José Ramón Iglesias, Marta Tortajada, Principado de Asturias, Prieto, María Auxiliadora, and Prieto, María Auxiliadora [0000-0002-8038-1223]
- Subjects
Microorganism ,In silico ,Bioengineering ,Applied Microbiology and Biotechnology ,Biochemistry ,Polyhydroxyalkanoates ,Caulobacter ,03 medical and health sciences ,chemistry.chemical_compound ,Industrial Microbiology ,Biotransformation ,Whey ,Data Mining ,Food science ,Lactose ,Research Articles ,030304 developmental biology ,0303 health sciences ,biology ,Strain (chemistry) ,030306 microbiology ,food and beverages ,Computational Biology ,Industrial microbiology ,biology.organism_classification ,chemistry ,Bacteria ,Biotechnology ,Research Article - Abstract
15 p.-6 fig.-6 tab., Polyhydroxyalkanoates (PHAs) are polyesters of microbial origin that can be synthesized by prokaryotes from noble sugars or lipids and from complex renewable substrates. They are an attractive alternative to conventional plastics because they are biodegradable and can be produced from renewable resources, such as the surplus of whey from dairy companies. After an in silico screening to search for SS-galactosidase and PHA polymerase genes, several bacteria were identified as potential PHA producers from whey based on their ability to hydrolyse lactose. Among them, Caulobacter segnis DSM 29236 was selected as a suitable strain to develop a process for whey surplus valorization. This microorganism accumulated 31.5% of cell dry weight (CDW) of poly(3-hydroxybutyrate) (PHB) with a titre of 1.5gl-1 in batch assays. Moreover, the strain accumulated 37% of CDW of PHB and 9.3gl-1 in fed-batch mode of operation. This study reveals this species as a PHA producer and experimentally validates the in silico bioprospecting strategy for selecting microorganisms for waste re-valorization., PROGRAMA AYUDAS A EMPRESAS PARA LA EJECUCIÓN DE PROYECTOS DE I+D+i, Principado de Asturias. Referencia: IE09- 176.
- Published
- 2019