5 results on '"Aide TM"'
Search Results
2. Biodiversity recovery of Neotropical secondary forests.
- Author
-
Rozendaal DMA, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Becknell JM, Bentos TV, Brancalion PHS, Cabral GAL, Calvo-Rodriguez S, Chave J, César RG, Chazdon RL, Condit R, Dallinga JS, de Almeida-Cortez JS, de Jong B, de Oliveira A, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Dutrieux LP, Espírito-Santo MM, Fandino MC, Fernandes GW, Finegan B, García H, Gonzalez N, Moser VG, Hall JS, Hernández-Stefanoni JL, Hubbell S, Jakovac CC, Hernández AJ, Junqueira AB, Kennard D, Larpin D, Letcher SG, Licona JC, Lebrija-Trejos E, Marín-Spiotta E, Martínez-Ramos M, Massoca PES, Meave JA, Mesquita RCG, Mora F, Müller SC, Muñoz R, de Oliveira Neto SN, Norden N, Nunes YRF, Ochoa-Gaona S, Ortiz-Malavassi E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Aguilar-Cano J, Rodriguez-Buritica S, Rodríguez-Velázquez J, Romero-Romero MA, Ruíz J, Sanchez-Azofeifa A, de Almeida AS, Silver WL, Schwartz NB, Thomas WW, Toledo M, Uriarte M, de Sá Sampaio EV, van Breugel M, van der Wal H, Martins SV, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Villa P, Williamson GB, Zanini KJ, Zimmerman J, and Poorter L
- Subjects
- Conservation of Natural Resources, Geography, Biodiversity, Ecosystem, Forests, Tropical Climate
- Abstract
Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.
- Published
- 2019
- Full Text
- View/download PDF
3. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America.
- Author
-
Paviolo A, De Angelo C, Ferraz KM, Morato RG, Martinez Pardo J, Srbek-Araujo AC, Beisiegel BM, Lima F, Sana D, Xavier da Silva M, Velázquez MC, Cullen L, Crawshaw P Jr, Jorge ML, Galetti PM, Di Bitetti MS, de Paula RC, Eizirik E, Aide TM, Cruz P, Perilli ML, Souza AS, Quiroga V, Nakano E, Ramírez Pinto F, Fernández S, Costa S, Moraes EA Jr, and Azevedo F
- Subjects
- Animals, Population Dynamics, South America, Biodiversity, Forests, Panthera physiology
- Abstract
The jaguar is the top predator of the Atlantic Forest (AF), which is a highly threatened biodiversity hotspot that occurs in Brazil, Paraguay and Argentina. By combining data sets from 14 research groups across the region, we determine the population status of the jaguar and propose a spatial prioritization for conservation actions. About 85% of the jaguar's habitat in the AF has been lost and only 7% remains in good condition. Jaguars persist in around 2.8% of the region, and live in very low densities in most of the areas. The population of jaguars in the AF is probably lower than 300 individuals scattered in small sub-populations. We identified seven Jaguar Conservation Units (JCUs) and seven potential JCUs, and only three of these areas may have ≥50 individuals. A connectivity analysis shows that most of the JCUs are isolated. Habitat loss and fragmentation were the major causes for jaguar decline, but human induced mortality is the main threat for the remaining population. We classified areas according to their contribution to jaguar conservation and we recommend management actions for each of them. The methodology in this study could be used for conservation planning of other carnivore species.
- Published
- 2016
- Full Text
- View/download PDF
4. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.
- Author
-
Bustamante MM, Roitman I, Aide TM, Alencar A, Anderson LO, Aragão L, Asner GP, Barlow J, Berenguer E, Chambers J, Costa MH, Fanin T, Ferreira LG, Ferreira J, Keller M, Magnusson WE, Morales-Barquero L, Morton D, Ometto JP, Palace M, Peres CA, Silvério D, Trumbore S, and Vieira IC
- Subjects
- Climate Change, Conservation of Natural Resources, Ecosystem, Forestry methods, Models, Theoretical, Tropical Climate, Biodiversity, Carbon, Carbon Cycle, Forests
- Abstract
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation., (© 2015 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
5. A contemporary assessment of change in humid tropical forests.
- Author
-
Asner GP, Rudel TK, Aide TM, Defries R, and Emerson R
- Subjects
- Brazil, Geography, Humidity, Biodiversity, Conservation of Natural Resources, Trees, Tropical Climate
- Abstract
In recent decades the rate and geographic extent of land-use and land-cover change has increased throughout the world's humid tropical forests. The pan-tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long-term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large-scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small-scale deforestation, low-intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.