1. Drivers of urban biodiversity in Mexico and joint risks from future urban expansion, climate change, and urban heat island effect.
- Author
-
Velasco JA, Luna-Aranguré C, Calderón-Bustamante O, Mendoza-Ponce A, Estrada F, and González-Salazar C
- Subjects
- Mexico, Humans, Animals, Ecosystem, Conservation of Natural Resources, Biodiversity, Climate Change, Urbanization, Cities
- Abstract
Urbanization is a phenomenon where humans concentrate in high densities and consume more per capita energy than in rural areas, imposing high pressures on biodiversity and ecosystem services. Although Mexico is recognized as a megadiverse country and there is an understanding of ecological and evolutionary processes underlying this high diversity, only some efforts have been devoted to understanding how urban biodiversity has been shaped. Here, we compiled a set of socioeconomic and ecological variables to explore macroecological patterns in urban biodiversity across Mexican municipalities. Specifically, we tested the species-area relationships (SAR) between rural and urban areas across municipalities and evaluated the relative role of different socioeconomic and ecological variables driving urban species richness for terrestrial vertebrates. Finally, we explored the exposure of Mexican municipalities to future urban expansion, the urban heat island (UHI) effect, and climate change. Urban and rural settlements show differences in the shape of SAR models. We found that urban area, size of the network of urban protected areas, the number of ecoregions, and GDP explained the urban total species richness relatively well. Mexican cities in the northeast region may be at a higher risk than others. Based on our analyses, policymakers should identify priority urban conservation sites in cities with high species richness and low urbanization development. These actions would alleviate future urban biodiversity loss in these growing cities., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Velasco et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF