1. Effects of chemical oxygen demand/nitrogen on electrochemical performances and denitrification efficiency in single-chamber microbial fuel cells: Insights from electron transfer and bacterial communities.
- Author
-
Lu Y, Liu L, Zhang X, Zhao T, Jin Y, Zhang Y, and Huang S
- Subjects
- Biological Oxygen Demand Analysis, Electrons, Bacteria, Nitrogen, Bioelectric Energy Sources
- Abstract
The electrochemical performances and denitrification efficiency of microbial fuel cells (MFCs) are often limited by chemical oxygen demand/nitrogen (COD/N) of wastewater. To overcome this limitation, single-chamber air cathode MFCs with varying COD/N (16/1, 8/1, and 4/1) were established to investigate their electrochemical performances, denitrification efficiency, and bacterial communities. The optimal COD/N for maximizing electricity generation and denitrification efficiency was 8/1, as supported by the greatest corrected coulomb efficiency (13.6%) and electron transfer rate (2.36 C/h for electricity generation, 39.77 C/h for denitrification). As COD/N decreased, the electrochemically active genus Geobacter was replaced by the denitrifying genera Un._f_Burkholderiaceae, Dechlorosoma, and Petrimonas. These results indicated that the efficiency of electricity generation and denitrification was not solely determined by the abundance of electrochemically active and denitrifying bacteria. The presence of a faster electron transfer pathway, possibly direct interspecies electron transfer, enhanced simultaneous electricity generation and denitrification in MFCs with COD/N of 8/1., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF