Eric Bruckert, Jean-Marie Heslan, E. Luce, Laia Tolosa, Samir Saheb, Arielle R. Rosenberg, Anne Dubart-Kupperschmitt, María José Gómez-Lechón, Angélique Fourrier, Jérôme Caron, Tuan Huy Nguyen, Maxime Villaret, Anne Weber, Véronique Pène, Physiopathogenèse et Traitement des Maladies du Foie [Villejuif], Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM), Virologie de l'hépatite C (EA 4474), Université Paris Descartes - Paris 5 (UPD5), Unidad de Hepatología Experimental [Valencia, Spain], Hospital Universitari La Fe, Centre de Recherche en Transplantation et Immunologie (U1064 Inserm - CRTI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Service d’Endocrinologie, Métabolisme et Prévention des Risques Cardio-Vasculaires [CHU Pitié-Salpêtrière], CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Liver Unit, Clínica Universitaria, CIBER-EHD, Hôpital Cochin [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), MESR (French Ministry for Education and Research),Fondation pour la Recherche Médicale (FDT20160435349),DHU Hepatinov,French Society for Hematology (SFH), Fondation pour la Recherche Médicale (FDT20160435349),Région Ile de France/DIM Biothérapies,Nantes Métropole and the Pays de la Loire Region., ANR-10-RFCS-0004,Liv-iPS,Modélisation et approches thérapeutiques de maladies génétiques hépatiques à l'aide de cellules iPS spécifiques de patients(2010), European Project: 278152,EC:FP7:HEALTH,FP7-HEALTH-2011-two-stage,INNOVALIV(2011), Le Bihan, Sylvie, Recherche finalisée sur les cellules souches - Modélisation et approches thérapeutiques de maladies génétiques hépatiques à l'aide de cellules iPS spécifiques de patients - - Liv-iPS2010 - ANR-10-RFCS-0004 - RFCS - VALID, Innovative strategies to generate human hepatocytes for treatment ofmetabolic Liver diseases: Tools for personalized cell therapy - INNOVALIV - - EC:FP7:HEALTH2011-12-01 - 2014-11-30 - 278152 - VALID, Physiopathogénèse et Traitement des Maladies du Foie, Hôpital Paul Brousse-Université Paris-Saclay, Hospital Universitari i Politècnic La Fe = University and Polytechnic Hospital La Fe, Service d'Endocrinologie, Métabolisme et Prévention des Maladies Cardio-vasculaires [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
Background Familial hypercholesterolemia type IIA (FH) is due to mutations in the low-density lipoprotein receptor (LDLR) resulting in elevated levels of low-density lipoprotein cholesterol (LDL-c) in plasma and in premature cardiovascular diseases. As hepatocytes are the only cells capable of metabolizing cholesterol, they are therefore the target cells for cell/gene therapy approaches in the treatment of lipid metabolism disorders. Furthermore, the LDLR has been reported to be involved in hepatitis C virus (HCV) entry into hepatocytes; however, its role in the virus infection cycle is still disputed. Methods We generated induced pluripotent stem cells (iPSCs) from a homozygous LDLR-null FH-patient (FH-iPSCs). We constructed a correction cassette bearing LDLR cDNA under the control of human hepatic apolipoprotein A2 promoter that targets the adeno-associated virus integration site AAVS1. We differentiated both FH-iPSCs and corrected FH-iPSCs (corr-FH-iPSCs) into hepatocytes to study statin-mediated regulation of genes involved in cholesterol metabolism. Upon HCV particle inoculation, viral replication and production were quantified in these cells. Results We showed that FH-iPSCs displayed the disease phenotype. Using homologous recombination mediated by the CRISPR/Cas9 system, FH-iPSCs were genetically corrected by the targeted integration of a correction cassette at the AAVS1 locus. Both FH-iPSCs and corr-FH-iPSCs were then differentiated into functional polarized hepatocytes using a stepwise differentiation approach (FH-iHeps and corr-FH-iHeps). The correct insertion and expression of the correction cassette resulted in restoration of LDLR expression and function (LDL-c uptake) in corr-FH-iHeps. We next demonstrated that pravastatin treatment increased the expression of genes involved in cholesterol metabolism in both cell models. Moreover, LDLR expression and function were also enhanced in corr-FH-iHeps after pravastatin treatment. Finally, we demonstrated that both FH-iHeps and corr-FH-iHeps were as permissive to viral infection as primary human hepatocytes but that virus production in FH-iHeps was significantly decreased compared to corr-FH-iHeps, suggesting a role of the LDLR in HCV morphogenesis. Conclusions Our work provides the first LDLR-null FH cell model and its corrected counterpart to study the regulation of cholesterol metabolism and host determinants of HCV life cycle, and a platform to screen drugs for treating dyslipidemia and HCV infection. Electronic supplementary material The online version of this article (10.1186/s13287-019-1342-6) contains supplementary material, which is available to authorized users.