1. Two GH16 Endo-1,3-β-D-Glucanases from Formosa agariphila and F. algae Bacteria Have Complete Different Modes of Laminarin Digestion
- Author
-
Svetlana P. Ermakova, Alexey A. Belik, Mikhail I. Kusaykin, and Anton B. Rasin
- Subjects
chemistry.chemical_classification ,biology ,Molecular mass ,Bioengineering ,Degree of polymerization ,biology.organism_classification ,Applied Microbiology and Biotechnology ,Biochemistry ,Substrate Specificity ,Hydrolysis ,Laminarin ,chemistry.chemical_compound ,Marine bacteriophage ,Enzyme ,Algae ,chemistry ,Digestion ,Flavobacteriaceae ,Glucans ,Molecular Biology ,Bacteria ,Biotechnology - Abstract
There is a comparative analysis of primary structures and catalytic properties of two recombinant endo-1,3-β-D-glucanases from marine bacteria Formosa agariphila KMM 3901 and previously reported F. algae KMM 3553. Both enzymes had the same molecular mass 61 kDa, temperature optimum 45 °C, and comparable ranges of thermal stability and Km. While the set of products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. algae was stable of the reaction with pH 4-9, the pH stability of the products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. agariphila varied at pH 5-6 for DP 2, at pH 4 and 7-8 for DP 5, and at pH 9 for DP 3. There were differences in modes of action of these enzymes on laminarin and 4-methylumbelliferyl-β-D-glucoside (Umb), indicating the presence of transglycosylating activity of endo-1,3-β-D-glucanase from F. algae and its absence in endo-1,3-β-D-glucanase from F. agariphila. While endo-1,3-β-D-glucanase from F. algae produced transglycosylated laminarioligosaccharides with a degree of polymerization 2-10 (predominately 3-4), endo-1,3-β-D-glucanase from F. agariphila did not catalyze transglycosylation in our lab parameters.
- Published
- 2021
- Full Text
- View/download PDF