Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca2+ signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca2+ probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca2+ transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg2+. These Ca2+ transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca2+ channels, or group I mGluRs. However, inhibition of Ca2+-induced Ca2+ release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca2+-induced Ca2+ release in amplifying NMDA receptor-driven Ca2+ signals at rest for the maintenance of synaptic homeostasis. DOI: http://dx.doi.org/10.7554/eLife.09262.001, eLife digest Learning and memory is thought to rely on changes in the strength of the connections between nerve cells. When an electrical impulse travelling through a nerve cell reaches one of these connections (called a synapse), it causes the cell to release chemical transmitter molecules. These bind to receptors on the cell on the other side of the synapse. This starts a series of events that ultimately leads to new receptors being inserted into the membrane of this second cell, which strengthens the connection between the two cells. The receptors involved in this process belong to two groups, called AMPA and NMDA receptors. Both groups are ion channels that regulate the flow of charged particles from one side of a cell's membrane to the other. In resting nerve cells, NMDA receptors are partially blocked by magnesium ions. However, the binding of the transmitter molecules to AMPA receptors causes these receptors to open and allow positively charged sodium ions into the cell. This changes the electrical charge across the cell membrane, which displaces the magnesium ions from the NMDA receptors so that they too open. Calcium ions then enter the cell through the NMDA receptors and activate a signaling cascade that leads to the production of new AMPA receptors. Nerve cells also release transmitter molecules in the absence of electrical impulses, and evidence suggests that individual cells can use this ‘spontaneous transmitter release’ to adjust the strength of their synapses. When these spontaneous release levels are high, AMPA receptors are removed from the membrane of the nerve after the synapse to make it less sensitive to the transmitter molecules. Conversely, when spontaneous release levels are low, additional AMPA receptors are added to the membrane to increase the sensitivity. Reese and Kavalali have now identified the mechanism behind this process by showing that spontaneously released transmitter molecules cause small amounts of calcium to enter the second nerve cell through NMDA receptors, even when these receptors are blocked by magnesium ions. This trickle of calcium triggers the release of more calcium from stores inside the cell, which amplifies the signal. The ultimate effect of the flow of calcium into the cell is to block the production of AMPA receptors, and ensure that the synapse does not become any stronger. As confirmation of this mechanism, Reese and Kavalali showed that simulating low levels of spontaneous activity by blocking the so-called ‘calcium-induced calcium release’ has the opposite effect. This led to more AMPA receptors being produced and stronger synapses. Taken together these findings indicate that spontaneous transmitter release exerts an outsized influence on communication between neurons by maintaining adequate levels of AMPA receptors via these ‘amplified’ calcium signals. DOI: http://dx.doi.org/10.7554/eLife.09262.002