1. Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation
- Author
-
Chiara Medaglia, Ido Amit, Lisa Katharina Wagner, Matthias Mack, Alexander Mildner, Hanjie Li, Steffen Jung, Amir Giladi, Dorothea Dörr, Simon Yona, Anat Shemer, Achim Leutz, and Franziska Paul
- Subjects
0301 basic medicine ,Myeloid ,Monocyte ,Multiple sclerosis ,Immunology ,Dendritic cell ,Biology ,medicine.disease ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,medicine.anatomical_structure ,Immune system ,medicine ,Immunology and Allergy ,CXCL10 ,Progenitor cell ,Neuroinflammation ,030215 immunology - Abstract
Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.
- Published
- 2020
- Full Text
- View/download PDF