1. Biochemical Characterization of a Novel Prenyltransferase from Streptomyces sp. NT11 and Development of a Recombinant Strain for the Production of 6-Prenylnaringenin
- Author
-
Cong Qiu, Yangbao Wu, Yang Liu, Jianjun Pei, and Linguo Zhao
- Subjects
Naringenin ,biology ,Bioconversion ,Kinase ,Chemistry ,Prenyltransferase ,General Chemistry ,biology.organism_classification ,medicine.disease_cause ,Streptomyces ,chemistry.chemical_compound ,Biochemistry ,Prenylation ,medicine ,Enzyme kinetics ,General Agricultural and Biological Sciences ,Escherichia coli - Abstract
Prenyl groups increase the lipophilicity of flavonoids, endowing them with a special activity, selectivity, and pharmacological properties by prenylation. Herein, a novel prenyltransferase (ShFPT) gene from Streptomyces sp. NT11 was expressed in Escherichia coli, and its biochemical characteristics were determined. ShFPT exhibited high selectivity to prenylate naringenin at C-6 to generate 6-prenylnaringenin. The optimal activity was observed at pH 6.0 and 55 °C. The Kcat and Km for naringenin were 0.0095 s-1 and 0.20 mM, respectively. Several promiscuous kinase and isopentenyl phosphate kinase genes were screened to develop the most efficient dimethylallyl diphosphate (DMAPP) synthesis pathway for 6-prenylnaringenin synthesis in E. coli. The 6-prenylnaringenin production was improved by changing the induction strategies and optimizing the bioconversion conditions. Finally, 6-prenylnaringenin production reached the highest yield of 69.9 mg/L with average productivity of 4.0 mg/L/h after 16 h incubation, which is the highest yield for any prenylated flavonoid reported to date in E. coli. Therefore, this study provides an efficient method for 6-prenylnaringenin production and reveals the DMAPP synthesis pathway.
- Published
- 2021
- Full Text
- View/download PDF